今天小编给大家分享一下python如何实现Excel多行多列的转换的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
将上表中的多行多列数据转换成下表中的三列多行数据,需要做的就是将同一日期不同坐标的值汇总到一列数据。核心思想就是新建一列然后把原来的一行多列数据汇总成一列多行数据。不同日期的值汇总到一起,即完成多行多列的转换。
1.引入库
import pandas as pd
2.读入数据
df = pd.read_excel('源数据.xlsx')
3.将需要合并的列的列名先放在列表中
merge_list = list(df.loc[:, '75.951142 39.473421':].columns)#这里是坐标,是日期右边的列名,可以根据自己的表格改。
4.填充空值为0
df.loc[:, '75.951142 39.473421':] = df.loc[:, '75.951142 39.473421':].fillna(0)
5.添加新列,把待合并的所有列变成一个大字符串(传入函数处理)
# 定义函数来处理合并操作 def merge_values(s): # 每2列进行合并分隔符为|,2列与2列合并分割符为#,即 监测值和坐标 result = [] for idx in range(0, len(s.values), 2): # len(s.values)即df.loc[:,'学科':]的每一行的长度 ,第三个字段2为步长2即2个合并 result.append(f'{s[idx]}|{merge_list[idx]}') # 生成一个列表,格式为数值和坐标,这里merge_list[idx]是后面添加的坐标列 return '#'.join(result) # 将列表用#号分割返回一个大字符串 格式为:检测值和坐标 # 添加新列,把待合并的所有列变成一个大字符串(传入函数处理) df['merge'] = df.loc[:, '75.951142 39.473421':].apply(merge_values, axis=1)
6.删除合并之前的列,保存id,name,merge列
df.drop(merge_list,axis=1,inplace=True)
7. 使用explode来变成多列
df['75.951142 39.473421'] = df['merge'].str.split('|').str[0]df['坐标'] = df['merge'].str.split('|').str[1]#这里添加新的坐标列df.drop(['merge'],axis=1,inplace=True)df['75.951142 39.473421'] = df['merge'].str.split('|').str[0] df['坐标'] = df['merge'].str.split('|').str[1]#这里添加新的坐标列 df.drop(['merge'],axis=1,inplace=True)
8.存储到本地生成新的csv文件
df.to_excel('转换后数据.xlsx', index=False)
以上就是“python如何实现Excel多行多列的转换”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。