本文小编为大家详细介绍“MybatisPlus字段类型转换如何实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“MybatisPlus字段类型转换如何实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
在使用传统的mybatis时,我们一般都会在xml文件定义一个ResultMap
对每个字段都有自己的定义都有两个类型
javaType可以不显式写出来,mybatis可以根据指定的实体类推断出来
jdbcType 也就是对应到数据库中的字段类型
mybatis完成数据库的数据到java实体类型的转换这两个类型是必不可少的。会根据javaType和jdbcType去匹配到对应的处理器完成类型转换
mybatis内置了很多typeHandler在启动时注册
public TypeHandlerRegistry(Configuration configuration) { this.unknownTypeHandler = new UnknownTypeHandler(configuration); register(Boolean.class, new BooleanTypeHandler()); register(boolean.class, new BooleanTypeHandler()); register(JdbcType.BOOLEAN, new BooleanTypeHandler()); register(JdbcType.BIT, new BooleanTypeHandler()); register(Byte.class, new ByteTypeHandler()); register(byte.class, new ByteTypeHandler()); register(JdbcType.TINYINT, new ByteTypeHandler()); register(Short.class, new ShortTypeHandler()); register(short.class, new ShortTypeHandler()); register(JdbcType.SMALLINT, new ShortTypeHandler()); register(Integer.class, new IntegerTypeHandler()); register(int.class, new IntegerTypeHandler()); register(JdbcType.INTEGER, new IntegerTypeHandler()); register(Long.class, new LongTypeHandler()); register(long.class, new LongTypeHandler()); register(Float.class, new FloatTypeHandler()); register(float.class, new FloatTypeHandler()); register(JdbcType.FLOAT, new FloatTypeHandler()); register(Double.class, new DoubleTypeHandler()); register(double.class, new DoubleTypeHandler()); register(JdbcType.DOUBLE, new DoubleTypeHandler()); register(Reader.class, new ClobReaderTypeHandler()); register(String.class, new StringTypeHandler()); register(String.class, JdbcType.CHAR, new StringTypeHandler()); register(String.class, JdbcType.CLOB, new ClobTypeHandler()); register(String.class, JdbcType.VARCHAR, new StringTypeHandler()); register(String.class, JdbcType.LONGVARCHAR, new StringTypeHandler()); register(String.class, JdbcType.NVARCHAR, new NStringTypeHandler()); register(String.class, JdbcType.NCHAR, new NStringTypeHandler()); register(String.class, JdbcType.NCLOB, new NClobTypeHandler()); register(JdbcType.CHAR, new StringTypeHandler()); register(JdbcType.VARCHAR, new StringTypeHandler()); register(JdbcType.CLOB, new ClobTypeHandler()); register(JdbcType.LONGVARCHAR, new StringTypeHandler()); register(JdbcType.NVARCHAR, new NStringTypeHandler()); register(JdbcType.NCHAR, new NStringTypeHandler()); register(JdbcType.NCLOB, new NClobTypeHandler()); register(Object.class, JdbcType.ARRAY, new ArrayTypeHandler()); register(JdbcType.ARRAY, new ArrayTypeHandler()); register(BigInteger.class, new BigIntegerTypeHandler()); register(JdbcType.BIGINT, new LongTypeHandler()); register(BigDecimal.class, new BigDecimalTypeHandler()); register(JdbcType.REAL, new BigDecimalTypeHandler()); register(JdbcType.DECIMAL, new BigDecimalTypeHandler()); register(JdbcType.NUMERIC, new BigDecimalTypeHandler()); register(InputStream.class, new BlobInputStreamTypeHandler()); register(Byte[].class, new ByteObjectArrayTypeHandler()); register(Byte[].class, JdbcType.BLOB, new BlobByteObjectArrayTypeHandler()); register(Byte[].class, JdbcType.LONGVARBINARY, new BlobByteObjectArrayTypeHandler()); register(byte[].class, new ByteArrayTypeHandler()); register(byte[].class, JdbcType.BLOB, new BlobTypeHandler()); register(byte[].class, JdbcType.LONGVARBINARY, new BlobTypeHandler()); register(JdbcType.LONGVARBINARY, new BlobTypeHandler()); register(JdbcType.BLOB, new BlobTypeHandler()); register(Object.class, unknownTypeHandler); register(Object.class, JdbcType.OTHER, unknownTypeHandler); register(JdbcType.OTHER, unknownTypeHandler); register(Date.class, new DateTypeHandler()); register(Date.class, JdbcType.DATE, new DateOnlyTypeHandler()); register(Date.class, JdbcType.TIME, new TimeOnlyTypeHandler()); register(JdbcType.TIMESTAMP, new DateTypeHandler()); register(JdbcType.DATE, new DateOnlyTypeHandler()); register(JdbcType.TIME, new TimeOnlyTypeHandler()); register(java.sql.Date.class, new SqlDateTypeHandler()); register(java.sql.Time.class, new SqlTimeTypeHandler()); register(java.sql.Timestamp.class, new SqlTimestampTypeHandler()); register(String.class, JdbcType.SQLXML, new SqlxmlTypeHandler()); register(Instant.class, new InstantTypeHandler()); register(LocalDateTime.class, new LocalDateTimeTypeHandler()); register(LocalDate.class, new LocalDateTypeHandler()); register(LocalTime.class, new LocalTimeTypeHandler()); register(OffsetDateTime.class, new OffsetDateTimeTypeHandler()); register(OffsetTime.class, new OffsetTimeTypeHandler()); register(ZonedDateTime.class, new ZonedDateTimeTypeHandler()); register(Month.class, new MonthTypeHandler()); register(Year.class, new YearTypeHandler()); register(YearMonth.class, new YearMonthTypeHandler()); register(JapaneseDate.class, new JapaneseDateTypeHandler()); // issue #273 register(Character.class, new CharacterTypeHandler()); register(char.class, new CharacterTypeHandler()); }
当然我们不指定类型的话mybatis也具备自动推断类型的能力。
org.apache.ibatis.executor.resultset.DefaultResultSetHandler#createAutomaticMappings
创建自动的字段映射根据数据库查询结果类型,和我们指定的对象字段类型做映射
当然也可以指定resultMap
@TableNam中有resultMap属性
/** * 实体映射结果集, * 只生效与 mp 自动注入的 method */ String resultMap() default "";
@Mapper public interface UserDoMapper extends BaseMapper<User> { @Results( id = "userResultMap", value = {@Result(column = "id",property = "id",javaType = Integer.class,jdbcType = JdbcType.INTEGER), @Result(column = "user_name",property = "userName",javaType = String.class,jdbcType = JdbcType.VARCHAR), @Result(column = "pass_word",property = "passWord",javaType = String.class,jdbcType = JdbcType.VARCHAR), @Result(column = "real_name",property = "realName",javaType = String.class,jdbcType = JdbcType.VARCHAR), @Result(column = "json_arr",property = "jsonArr",typeHandler = StringToJsonArrayBaseTypeHandler.class), } ) @Select("SELECT * FROM user ${ew.customSqlSegment}") User searchDetail( @Param(Constants.WRAPPER) Wrapper<User> wrapper); }
@TableName(resultMap = "userResultMap") public class User { @TableField(jdbcType = JdbcType.INTEGER) private Integer id; @TableField(jdbcType = JdbcType.VARCHAR) private String userName; @TableField(jdbcType = JdbcType.VARCHAR) private String passWord; @TableField(jdbcType = JdbcType.VARCHAR) private String realName; @TableField(typeHandler = StringToJsonArrayBaseTypeHandler.class) private List<String> jsonArr; }
那么我们不想手动定义ResutMap但是又想处理一些复杂类型的转换 就可以使用autoResultMap
我们在使用mybatisPlus时在大多数情况是不会定义resultMap的,那么mybatisPlus是如何完成字段映射的,那么答案显而易见,就是使用myabtis的字段自动创建映射的功能。
自动映射的方案有什么缺点?
1.对于复杂的类型,无法指定转换方案,无法使用自定义的类型转换器。
2.无法使用关联查询
开启autoResultMap
@TableName(autoResultMap = true)
那么mybatisPlus会根据我们的实体类的类型,为我们自动注入resultMap,注入的resultMap也会自动推断出需要使用的类型转换器当然我们也可以指定
例如
@TableField(typeHandler = StringToJsonArrayBaseTypeHandler.class) private List<String> jsonArr;
也因此说,对于查询来说,mybatisPlus通过@TableField指定类型转换器,一定要开启autoResultMap才能生效了。另外mybatisPlus只会为BaseMapper中的方法生成resultMap,而我们自定义的方法,是不会生成的。
例如
@Mapper public interface UserDoMapper extends BaseMapper<User> { @Select("SELECT * FROM user ${ew.customSqlSegment}") User searchDetail( @Param(Constants.WRAPPER) Wrapper<User> wrapper); }
这种写法autoResultMap和指定的类型转换器是不会生效的。如果有复杂字段转换需求,需要通过@Results标签定义resultMap
例如
以及通过@ResultMap标签进行引用
不指定jdbcType时mybatis往往也能够完成自动转换,例如java中的String自然对应到数据库的VAERCHAR
在mybatis无法根据自动完成javaType到jdbcType的转换时,可以使用@TableField注解完成转换,例如我们想将一个数据库中的VARCHAR类型映射成为java中的Integer,对于插入操作时又要完成Integer到VARCHAR的转换,如果不指定jdbcType那么插入操作将会报错
@TableField(jdbcType = JdbcType.VARCHAR) private Integer age;
前面看的是对于查询结果的转换,那么对于插入,更新,查询等操作,也有一个javaType到jdbcType的转换,对于复杂的字段类型 例如集合转json又是如何生效的?
还是先看传统mybatis定义映射的写法
<insert id="insert" parameterType="com.imtech.yasha.sp.common.mapper.dto.sp.ZbLabourBidAuctionList" > insert into zb_labour_bid_auction_list (id, uuid, uuid_t, creater, create_time, updater, update_time, item_d, item_n, order_no, list_no, sub_project_name, construction_tech, unit, project_quantity, unit_price, total, remark, supplier_no, supplier_name) values (#{id,jdbcType=BIGINT}, #{uuid,jdbcType=VARCHAR}, #{uuidT,jdbcType=VARCHAR}, #{creater,jdbcType=VARCHAR}, #{createTime,jdbcType=TIMESTAMP}, #{updater,jdbcType=VARCHAR}, #{updateTime,jdbcType=TIMESTAMP}, #{itemD,jdbcType=VARCHAR}, #{itemN,jdbcType=VARCHAR}, #{orderNo,jdbcType=VARCHAR}, #{listNo,jdbcType=VARCHAR}, #{subProjectName,jdbcType=VARCHAR}, #{constructionTech,jdbcType=VARCHAR}, #{unit,jdbcType=VARCHAR}, #{projectQuantity,jdbcType=NUMERIC}, #{unitPrice,jdbcType=NUMERIC}, #{total,jdbcType=NUMERIC}, #{remark,jdbcType=VARCHAR}, #{supplierNo,jdbcType=VARCHAR}, #{supplierName,jdbcType=VARCHAR}) </insert>
在参数上一般都会定义jdbcType,至于JavaType可以从parameterType指定的class中推断出来,这样javaTyp和jdbcType都被确定下来,很容易匹配到对应的处理器进行类型转换。
那么在mybatisPlus中显然不会为每个入参字段定义jdbcType,那么对于入参是如何进行转换的,复杂类型又是如何指定的
@TableField(typeHandler = StringToJsonArrayBaseTypeHandler.class) private List<String> jsonArr;
答案也是通过@TableField指定的,而且即使关闭autoResultMap,对于查询参数的转换,指定的类型转换器和jdbcType也是会生效的。
读到这里,这篇“MybatisPlus字段类型转换如何实现”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。