温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么使用Python和OpenCV库实现识别人物出现并锁定

发布时间:2023-05-09 15:31:06 来源:亿速云 阅读:115 作者:zzz 栏目:开发技术

今天小编给大家分享一下怎么使用Python和OpenCV库实现识别人物出现并锁定的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

1. 安装必要的库

首先,确保您已安装以下库:

  • OpenCV: 用于图像处理和计算机视觉任务

  • imutils: 提供一些实用函数,如图像旋转、裁剪等

安装方法如下:

pip install opencv-python
pip install imutils

2. 加载和显示视频

首先,我们需要导入所需的库,并加载一个视频文件。我们将使用OpenCV的VideoCapture类来加载视频。

import cv2
import imutils

video_path = "path/to/your/video.mp4"

# 打开视频
cap = cv2.VideoCapture(video_path)

while True:
    ret, frame = cap.read()

    if not ret:
        break

    # 缩放以提高处理速度
    frame = imutils.resize(frame, width=600)

    cv2.imshow("Input Video", frame)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

3. 应用预训练的人物检测模型

接下来,我们将使用OpenCV中提供的预训练模型。这里我们使用MobileNet-SSD模型,因为它在速度和准确性之间达到了很好的平衡。

prototxt_path = "path/to/your/MobileNetSSD_deploy.prototxt"
model_path = "path/to/your/MobileNetSSD_deploy.caffemodel"

# 加载预训练模型
net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)

4. 在检测到的人物周围绘制边界框

现在,我们将使用预训练的模型来检测视频中的人物,并在检测到的人物周围绘制边界框。

# 设置置信度阈值
confidence_threshold = 0.5

while True:
    ret, frame = cap.read()

    if not ret:
        break

    frame = imutils.resize(frame, width=600)
    (h, w) = frame.shape[:2]

    # 将图像转换为blob
    blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)

    net.setInput(blob)
    detections = net.forward()

    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]

        if confidence > confidence_threshold:
            idx = int(detections[0, 0, i, 1])

            if idx == 15:  # 15 代表人类
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")

                # 在检测到的人物周围绘制边界框
                cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)

    cv2.imshow("Input Video", frame)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

5. 保存和显示结果

最后,我们将处理后的视频保存到磁盘,并在程序完成后关闭所有窗口。

# 创建 VideoWriter 对象以保存处理后的视频
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("output.mp4", fourcc, 30, (w, h))

while True:
    ret, frame = cap.read()

    if not ret:
        break

    frame = imutils.resize(frame, width=600)
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)

    net.setInput(blob)
    detections = net.forward()

    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]

        if confidence > confidence_threshold:
            idx = int(detections[0, 0, i, 1])

            if idx == 15:
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")
                cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)

    # 将帧写入输出视频
    out.write(frame)

    cv2.imshow("Input Video", frame)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
out.release()
cv2.destroyAllWindows()

以上就是“怎么使用Python和OpenCV库实现识别人物出现并锁定”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI