在MXNet中使用预训练模型进行迁移学习主要分为以下几个步骤:
from mxnet.gluon.model_zoo import vision
pretrained_model = vision.resnet18_v2(pretrained=True)
from mxnet.gluon import nn
num_classes = 10
pretrained_model.output = nn.Dense(num_classes)
for param in pretrained_model.collect_params().values():
param.grad_req = 'null'
import mxnet as mx
from mxnet.gluon.data.vision import datasets, transforms
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
train_data = datasets.CIFAR10(train=True).transform_first(transform)
test_data = datasets.CIFAR10(train=False).transform_first(transform)
batch_size = 32
train_loader = mx.gluon.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = mx.gluon.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
import mxnet as mx
ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu()
pretrained_model.initialize(ctx=ctx)
criterion = mx.gluon.loss.SoftmaxCrossEntropyLoss()
optimizer = mx.gluon.Trainer(pretrained_model.collect_params(), 'sgd', {'learning_rate': 0.001})
num_epochs = 10
for epoch in range(num_epochs):
for inputs, labels in train_loader:
inputs = inputs.as_in_context(ctx)
labels = labels.as_in_context(ctx)
with mx.autograd.record():
outputs = pretrained_model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step(batch_size)
print(f'Epoch {epoch + 1}, Loss: {mx.nd.mean(loss).asscalar()}')
from mxnet import metric
accuracy = metric.Accuracy()
for inputs, labels in test_loader:
inputs = inputs.as_in_context(ctx)
labels = labels.as_in_context(ctx)
outputs = pretrained_model(inputs)
accuracy.update(labels, outputs)
print(f'Test accuracy: {accuracy.get()[1]}')
以上就是在MXNet中使用预训练模型进行迁移学习的基本步骤,你可以根据具体的任务和数据集进行相应的调整和优化。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。