要使用Lasagne框架进行自定义层的开发,可以按照以下步骤进行:
import lasagne
import theano.tensor as T
class CustomDenseLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), **kwargs):
super(CustomDenseLayer, self).__init__(incoming, **kwargs)
self.num_units = num_units
self.nonlinearity = nonlinearity
self.W = self.add_param(W, (incoming.output_shape[1], num_units), name='W')
if b is None:
self.b = None
else:
self.b = self.add_param(b, (num_units,), name='b', regularizable=False)
def get_output_for(self, input, **kwargs):
activation = T.dot(input, self.W)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
input_var = T.matrix('input')
target_var = T.ivector('target')
network = lasagne.layers.InputLayer(shape=(None, 784), input_var=input_var)
network = CustomDenseLayer(network, num_units=100)
network = lasagne.layers.DenseLayer(network, num_units=10, nonlinearity=lasagne.nonlinearities.softmax)
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var).mean()
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.adam(loss, params)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
通过以上步骤,就可以使用Lasagne框架进行自定义层的开发和神经网络模型的构建。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。