温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Linux下C++的线程池实现

发布时间:2024-12-19 19:19:47 来源:亿速云 阅读:78 作者:小樊 栏目:云计算

在 Linux 下,可以使用 C++11 之后标准库中的 <thread><future> 头文件来实现线程池

#include <iostream>
#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <future>

class ThreadPool {
public:
    ThreadPool(size_t num_threads) : stop(false) {
        for (size_t i = 0; i < num_threads; ++i) {
            workers.emplace_back([this] {
                for (;;) {
                    std::function<void()> task;
                    {
                        std::unique_lock<std::mutex> lock(this->queue_mutex);
                        this->condition.wait(lock, [this] { return this->stop || !this->tasks.empty(); });
                        if (this->stop && this->tasks.empty()) {
                            return;
                        }
                        task = std::move(this->tasks.front());
                        this->tasks.pop();
                    }
                    task();
                }
            });
        }
    }

    ~ThreadPool() {
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            stop = true;
        }
        condition.notify_all();
        for (std::thread &worker : workers) {
            worker.join();
        }
    }

    template <class F, class... Args>
    auto enqueue(F&& f, Args&&... args) -> std::future<typename std::result_of<F(Args...)>::type> {
        using return_type = typename std::result_of<F(Args...)>::type;
        auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));
        std::future<return_type> res = task->get_future();
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            if (stop) {
                throw std::runtime_error("enqueue on stopped ThreadPool");
            }
            tasks.emplace([task]() { (*task)(); });
        }
        condition.notify_one();
        return res;
    }

private:
    std::vector<std::thread> workers;
    std::queue<std::function<void()>> tasks;
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
};

int main() {
    ThreadPool pool(4);

    auto result1 = pool.enqueue([](int a, int b) { return a + b; }, 5, 3);
    std::cout << "Result 1: " << result1.get() << std::endl;

    auto result2 = pool.enqueue([](int a, int b) { return a * b; }, 4, 6);
    std::cout << "Result 2: " << result2.get() << std::endl;

    return 0;
}

这个实现中,我们创建了一个 ThreadPool 类,它接受一个参数 num_threads,表示线程池中的线程数量。在构造函数中,我们创建了指定数量的线程,并将它们添加到 workers 向量中。每个线程都运行一个无限循环,等待任务队列中的任务。当队列为空且停止标志为真时,线程将退出循环并结束。

我们还实现了一个 enqueue 函数,它接受一个可调用对象 f 和其参数 args。这个函数将任务添加到任务队列中,并返回一个 std::future 对象,该对象将在任务完成时持有结果。

main 函数中,我们创建了一个包含 4 个线程的线程池,并添加了两个任务。第一个任务计算两个整数的和,第二个任务计算两个整数的乘积。我们使用 std::future::get() 函数获取任务的结果,并将其输出到控制台。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI