#

梯度

  • Tensorflow 卷积的梯度反向传播过程

    一. valid卷积的梯度 我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导);第二种情况,在已知张量的情况下,对未知卷积核求导

    作者:LQ6H
    2020-09-21 03:14:51
  • Tensorflow实现部分参数梯度更新操作

    在深度学习中,迁移学习经常被使用,在大数据集上预训练的模型迁移到特定的任务,往往需要保持模型参数不变,而微调与任务相关的模型层。 本文主要介绍,使用tensorflow部分更新模型参数的方法。 1.

    作者:zchenack
    2020-09-06 08:42:39
  • 对pytorch中的梯度更新方法详解

    背景 使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整。收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和

    作者:库页
    2020-09-05 14:06:07
  • 有关Tensorflow梯度下降常用的优化方法分享

    1.tf.train.exponential_decay() 指数衰减学习率: #tf.train.exponential_decay(learning_rate, global_steps, d

    作者:数学改变世界
    2020-08-31 13:56:03
  • 在pytorch中实现只让指定变量向后传播梯度

    pytorch中如何只让指定变量向后传播梯度? (或者说如何让指定变量不参与后向传播?) 有以下公式,假如要让L对xvar求导: (1)中,L对xvar的求导将同时计算out1部分和out2部分;

    作者:美利坚节度使
    2020-08-20 23:18:53
  • TensorFlow梯度求解tf.gradients实例

    我就废话不多说了,直接上代码吧! import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]])

    作者:yqtaowhu
    2020-08-20 10:14:49