library(randomForest)
data(iris)
set.seed(100)
ind<-sample(2,nrow(iris),replace=TRUE,prob=c(0.7,0.3))#对数据分成两部分,70%训练数据,30%检测数据/
traindata<-iris[ind==1,]
testdata<- iris[ind==2,]
iris.rf=randomForest(Species~.,iris[ind==1,],ntree=50,nPerm=10,mtry=3,proximity=TRUE,importance=TRUE)
print(iris.rf)
iris.pred=predict( iris.rf,iris[ind==2,])
table(observed=iris[ind==2,"Species"],predicted=iris.pred)
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。