温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

keras加入lambda层时shape出现问题怎么办

发布时间:2020-07-17 10:25:09 来源:亿速云 阅读:218 作者:小猪 栏目:开发技术

小编这次要给大家分享的是keras加入lambda层时shape出现问题怎么办,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。

使用keras时,加入keras的lambda层以实现自己定义的操作。但是,发现操作结果的shape信息有问题。

我的后端是theano,使用了sum操作。

比如输入时,shape为(32,28,28),其中32为batch大小。

此时对应的ndim应该等于3。

但是,lambda处理后结果显示_keras_shape为(32,28,28),而ndim却是2。

这导致后边各项操作都会出现问题。

此处sum函数加入参数keepdims=True即可。

此注意keras中的各种层几乎都不用去理会batch的大小,系统会自动在shape中加入None占位,所以很多参数也不用加入batch的大小。但是进行sum等操作时,选择按照哪个axis进行操作,要考虑batch的存在。

补充知识:keras Merge or merge

在使用keras merge层时,发现有Merge 、merge两种:

from keras.layers import Merge

from keras.layers import merge

使用第一种是报错

“TensorVariable object has no attribute 'get_output_shape_at' ”

使用第二种小写即可。

看完这篇关于keras加入lambda层时shape出现问题怎么办的文章,如果觉得文章内容写得不错的话,可以把它分享出去给更多人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI