这篇文章主要讲解了怎么使用Tensorflow中的降维函数tf.reduce_*,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总
1.tf.reduce_sum
tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)
参数:
返回:
该函数返回减少的张量,相当于np.sum
功能:
此函数计算一个张量的各个维度上元素的总和。
说明:
函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[1, 1, 1], [1, 1, 1]]) tf.reduce_sum(x) # 6 tf.reduce_sum(x, 0) # [2, 2, 2] tf.reduce_sum(x, 1) # [3, 3] tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]] tf.reduce_sum(x, [0, 1]) # 6
2.reduce_min
reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
该函数返回减少的张量,相当于np.min
功能:
tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。
说明:
同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
3.reduce_max
reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
该函数返回减少的张量,相当于np.max。
功能:
计算一个张量的各个维度上元素的最大值。
说明:
按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。
4.reduce_mean
reduce_mean
5.reduce_all
reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
该函数返回减少的张量,相当于np.mean
功能:
计算张量的各个维度上的元素的平均值。
说明:
axis是tf.reduce_mean函数中的参数,按照函数中axis给定的维度减少input_tensor。除非keep_dims是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。 如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[1., 1.], [2., 2.]]) tf.reduce_mean(x) # 1.5 tf.reduce_mean(x, 0) # [1.5, 1.5] tf.reduce_mean(x, 1) # [1., 2.]
6.reduce_any
reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
减少张量,相当于np.any
功能:
在张量的维度上计算元素的 "逻辑或"。
说明:
按照axis给定的维度减少input_tensor。除非 keep_dims 是 true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。如果axis没有条目,则会减少所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[True, True], [False, False]]) tf.reduce_any(x) # True tf.reduce_any(x, 0) # [True, True] tf.reduce_any(x, 1) # [True, False]
7.reduce_logsumexp
reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
减少的张量。
功能:
计算log(sum(exp(张量的各维数的元素)))。
说明:
按照给定的axis上的维度减少input_tensor。除非keep_dims是true,否则张量的秩在axis上的每一项都减少1。如果keep_dims为 true,则减少的尺寸将保留为1。如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。这个函数在数值上比 log(sum(exp(input)))更稳定。它避免了大量输入的 exp 引起的溢出和小输入日志带来的下溢。
举例:
x = tf.constant([[0., 0., 0.], [0., 0., 0.]]) tf.reduce_logsumexp(x) # log(6) tf.reduce_logsumexp(x, 0) # [log(2), log(2), log(2)] tf.reduce_logsumexp(x, 1) # [log(3), log(3)] tf.reduce_logsumexp(x, 1, keep_dims=True) # [[log(3)], [log(3)]] tf.reduce_logsumexp(x, [0, 1]) # log(6)
8.reduce_prod
reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
返回:
结果返回减少的张量,相当于np.prod
功能:
此函数计算一个张量的各个维度上元素的乘积。
说明:
函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
看完上述内容,是不是对怎么使用Tensorflow中的降维函数tf.reduce_*有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。