这篇文章主要讲解了如何使用Python ArgumentParse的subparser,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
在写一些很小的机器学习项目的时候,我们往往希望training, testing和inference能共用一个入口main,但是不同的功能使用不同的input参数.当然如果三个功能对应三个.py脚本问题也不大,但是毕竟觉得不太优雅.这个时候就需要考虑如何让代码更加简单有条理.
主要是最近在看parser有关的东西,所以看到了一个项目,里面的使用subparser的地方是值得借鉴的,下面附上代码和部分自己的一些见解
def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() hparams = make_hparams() # 这个函数是直接写了一些超参数,讲真我不太喜欢这个操作,个人还是比较倾向用一个额外的config文件来存储 # 这些超参,这样输入的只要是config文件的路径即可;主要是这么做可以看到自己每一步的参数是怎么设置的 # 便于后期出现了问题来排错 subparser = subparsers.add_parser("train") # add subparser here subparser.set_defaults(callback=lambda args: run_train(args, hparams)) # 加上callback选项,run_train是前期定义的一个函数,这条和后面的args.callback(args)对应 hparams.populate_arguments(subparser) # 这里就是作者自己定义的一个函数,本质其实还是一系列的add_argument subparser.add_argument("--numpy-seed", type=int) subparser.add_argument("--model-path-base", required=True) subparser.add_argument("--evalb-dir", default="EVALB/") subparser.add_argument("--train-path", default="data/02-21.10way.clean") subparser.add_argument("--dev-path", default="data/22.auto.clean") subparser.add_argument("--batch-size", type=int, default=250) subparser.add_argument("--subbatch-max-tokens", type=int, default=2000) subparser.add_argument("--eval-batch-size", type=int, default=100) subparser.add_argument("--epochs", type=int) subparser.add_argument("--checks-per-epoch", type=int, default=4) subparser.add_argument("--print-vocabs", action="store_true") subparser = subparsers.add_parser("test") subparser.set_defaults(callback=run_test) subparser.add_argument("--model-path-base", required=True) subparser.add_argument("--evalb-dir", default="EVALB/") subparser.add_argument("--test-path", default="data/23.auto.clean") subparser.add_argument("--test-path-raw", type=str) subparser.add_argument("--eval-batch-size", type=int, default=100) subparser = subparsers.add_parser("ensemble") subparser.set_defaults(callback=run_ensemble) subparser.add_argument("--model-path-base", nargs='+', required=True) subparser.add_argument("--evalb-dir", default="EVALB/") subparser.add_argument("--test-path", default="data/22.auto.clean") subparser.add_argument("--eval-batch-size", type=int, default=100) subparser = subparsers.add_parser("parse") subparser.set_defaults(callback=run_parse) subparser.add_argument("--model-path-base", required=True) subparser.add_argument("--input-path", type=str, required=True) subparser.add_argument("--output-path", type=str, default="-") subparser.add_argument("--eval-batch-size", type=int, default=100) subparser = subparsers.add_parser("viz") subparser.set_defaults(callback=run_viz) subparser.add_argument("--model-path-base", required=True) subparser.add_argument("--evalb-dir", default="EVALB/") subparser.add_argument("--viz-path", default="data/22.auto.clean") subparser.add_argument("--eval-batch-size", type=int, default=100) args = parser.parse_args() args.callback(args)
补充知识:python 学习笔记--argparse模块以及parse_known_args()函数
代码test.py:
import argparse import sys parse=argparse.ArgumentParser() parse.add_argument("--learning_rate",type=float,default=0.01,help="initial learining rate") parse.add_argument("--max_steps",type=int,default=2000,help="max") parse.add_argument("--hidden1",type=int,default=100,help="hidden1") flags,unparsed=parse.parse_known_args(sys.argv[1:]) print flags.learning_rate print flags.max_steps print flags.hidden1 print unparsed
运行
python test.py --learning_rate 20 --max_steps 10 --hidden1 100 --arg_int 2
其效果等同于
python test.py --learning_rate=20 --max_steps=10 --hidden1=100 --arg_int=2
输出:
20.0
10
100['--arg_int', '2']
flags为namespace空间,结果是Namespace(hidden1=100, learning_rate=20.0, max_steps=10),包含程序定义了的命令行参数,而unparsed为程序没有定义的命令行参数。
看完上述内容,是不是对如何使用Python ArgumentParse的subparser有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。