温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

数组拼接tf.concat()和np.concatenate()的区别是什么

发布时间:2021-02-02 15:15:09 来源:亿速云 阅读:427 作者:小新 栏目:开发技术

这篇文章给大家分享的是有关数组拼接tf.concat()和np.concatenate()的区别是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

废话不多说啦,直接看代码吧!

tf.concat

t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]
tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

numpy.concatenate

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
np.concatenate((a, b), axis=0)
array([[1, 2],
  [3, 4],
  [5, 6]])
np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
  [3, 4, 6]])

感谢各位的阅读!关于“数组拼接tf.concat()和np.concatenate()的区别是什么”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI