温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

opencv python Canny边缘提取的示例分析

发布时间:2021-05-27 14:37:27 来源:亿速云 阅读:242 作者:小新 栏目:开发技术

这篇文章给大家分享的是有关opencv python Canny边缘提取的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍

opencv python Canny边缘提取的示例分析

非最大信号抑制:

opencv python Canny边缘提取的示例分析

高低阈值连接:

opencv python Canny边缘提取的示例分析

example

import cv2 as cv
import numpy as np


# canny运算步骤:5步
# 1. 高斯模糊 - GaussianBlur
# 2. 灰度转换 - cvtColor
# 3. 计算梯度 - Sobel/Scharr
# 4. 非极大值抑制
# 5. 高低阈值输出二值图像

# 非极大值抑制:
# 算法使用一个3×3邻域作用在幅值阵列M[i,j]的所有点上;
# 每一个点上,邻域的中心像素M[i,j]与沿着梯度线的两个元素进行比较,
# 其中梯度线是由邻域的中心点处的扇区值ζ[i,j]给出。
# 如果在邻域中心点处的幅值M[i,j]不比梯度线方向上的两个相邻点幅值大,则M[i,j]赋值为零,否则维持原值;
# 此过程可以把M[i,j]宽屋脊带细化成只有一个像素点宽,即保留屋脊的高度值。

# 高低阈值连接
# T1,T2为阈值,凡是高于T2的都保留,凡是低于T1的都丢弃
# 从高于T2的像素出发,凡是大于T1而且相互连接的都保留。最终得到一个输出二值图像
# 推荐高低阈值比值为T2:T1 = 3:1/2:1,其中T2高阈值,T1低阈值


def edge_demo(image):
  blurred = cv.GaussianBlur(image, (3, 3), 0)
  gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)

  grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
  grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1)

  # edge_output = cv.Canny(grad_x, grad_y, 30, 150)
  edge_output = cv.Canny(gray, 50, 150)
  cv.imshow("gray", gray)
  cv.imshow("Canny demo", edge_output)


def main():
  src = cv.imread("../images/Crystal.jpg")
  cv.imshow("demo",src)

  edge_demo(src)
  cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
  cv.destroyAllWindows() # 关闭所有窗口


if __name__ == '__main__':
  main()

感谢各位的阅读!关于“opencv python Canny边缘提取的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI