温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

二次规划与线性规划怎么在Python项目中使用

发布时间:2021-03-22 17:51:56 来源:亿速云 阅读:220 作者:Leah 栏目:开发技术

二次规划与线性规划怎么在Python项目中使用?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

对于二次规划(quadratic programming)和线性规划(Linear Programming)问题

MATLAB里是有quadprog函数可以直接用来解决二次规划问题的,linprog函数来解决线性规划问题。Python中也有很多库用来解决,对于二次规划有CVXOPT, CVXPY, Gurobi, MOSEK, qpOASES 和 quadprog; 对于线性规划有Gurobi,PuLP, cvxopt。

目前发现quadprog进行pip install quadprog不成功,而cvxopt成功了,就先说cvxopt的使用。

安装

conda install -c conda-forge cvxopt

安装非常顺利

使用

cvxopt有自己的matrix格式,因此使用前得包装一下

对于二次规划:

def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None):
  P = .5 * (P + P.T) # make sure P is symmetric
  args = [cvxopt.matrix(P), cvxopt.matrix(q)]
  if G is not None:
    args.extend([cvxopt.matrix(G), cvxopt.matrix(h)])
    if A is not None:
      args.extend([cvxopt.matrix(A), cvxopt.matrix(b)])
  sol = cvxopt.solvers.qp(*args)
  if 'optimal' not in sol['status']:
    return None
  return np.array(sol['x']).reshape((P.shape[1],))

对于线性规划:

def cvxopt_solve_lp(f, A, b):
  #args = [cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)]
  #cvxopt.solvers.lp(*args)
  sol = cvxopt.solvers.lp(cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b))
  return np.array(sol['x']).reshape((f.shape[0],))

关于二次规划与线性规划怎么在Python项目中使用问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注亿速云行业资讯频道了解更多相关知识。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI