温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pandas怎么操作CSV文件

发布时间:2021-06-02 17:48:13 来源:亿速云 阅读:147 作者:Leah 栏目:开发技术

Pandas怎么操作CSV文件?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

(1)、导库

import pandas as pd
from pandas import Series

(2)、读取csv文件的两种方式

#读取csv文件的两种方式
f = open('E:/建模/第5周/data/ex1.csv') #方法一
df = pd.read_csv(f)
print(df)
f.close

f = open('E:/建模/第5周/data/ex1.csv') #方法二,必须指定分隔符为',',否则会读取失败
df = pd.read_table(f,sep=',')
print(df)
f.close

(2)、根据需要条件读取csv文件

#根据需要条件读取csv文件
f = open('E:/建模/第5周/data/csv_mindex.csv') 
df = pd.read_csv(f,header=None)   #不需要表头
df = pd.read_csv(f,names=['a','b','c','d','message'])  #添加表头
df = pd.read_csv(f,names=['a','b','c','d','message'],index_col = 'message')  #指定某一列作为行索引
df = pd.read_csv(f,index_col = ['key1','key2'])  #指定多列作为行索引
print(df)
f.close

(3)、利用正则表达式读取不同含有不同分隔符的文件

#利用正则表达式读取不同含有不同分隔符的文件
f = open('E:/建模/第5周/data/ex3.txt') 
df = pd.read_table(f,sep='\s+')
print(df)

(4)、根据需要选择需要读的行

#根据需要选择需要读的行
f = open('E:/建模/第5周/data/ex4.csv') 
df = pd.read_table(f,sep=',',skiprows=[0,2,3]) #跳过不想读的行
print(df)

(5)、处理缺失值

#处理缺失值
f = open('E:/建模/第5周/data/ex5.csv') 
df = pd.read_table(f,sep=',',na_values='world') #如果数据中有'world',也会视为缺失值
print(df)

(6)、逐行读取文件

#逐行读取文件
f = open('E:/建模/第5周/data/ex6.csv') 
df = pd.read_table(f,sep=',',nrows=5) #只读取前面5行
print(df)

(7)、将dataframe数据写入csv文件

#将dataframe数据写入csv文件
f = open('E:/建模/第5周/data/ex5.csv') 
data = pd.read_csv(f)
data.to_csv('E:/建模/第5周/data/out.csv')  #将dataframe输出到csv文件中
data.to_csv('E:/建模/第5周/data/out.csv',na_rep='ok')  #将缺失值补上‘ok'
data.to_csv('E:/建模/第5周/data/out.csv',header=None)  #不设置表头
data.to_csv('E:/建模/第5周/data/out.csv',columns=['a','b'])  #写出指定的列

(8)、将csv文件读取位Series

#将csv文件读取位Series
f = open('E:/建模/第5周/data/tseries.csv') 
series = Series.from_csv(f,parse_dates=True)
print(series)

看完上述内容,你们掌握Pandas怎么操作CSV文件的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI