温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch中怎么查看可训练参数

发布时间:2021-06-17 16:59:40 来源:亿速云 阅读:270 作者:Leah 栏目:开发技术

本篇文章给大家分享的是有关pytorch中怎么查看可训练参数,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

pytorch中model.parameters()函数定义如下:

  def parameters(self):
    r"""Returns an iterator over module parameters.

    This is typically passed to an optimizer.

    Yields:
      Parameter: module parameter

    Example::

      >>> for param in model.parameters():
      >>>   print(type(param.data), param.size())
      <class 'torch.FloatTensor'> (20L,)
      <class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)

    """
    for name, param in self.named_parameters():
      yield param

所以,我们可以遍历named_parameters()中的所有的参数,只打印那些param.requires_grad=True的变量。具体实现代码如下所示:

for name, param in model.named_parameters():
  if param.requires_grad:
    print(name)

以上就是pytorch中怎么查看可训练参数,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI