温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pandas的qcut()方法详解

发布时间:2020-09-17 12:58:48 来源:脚本之家 阅读:407 作者:猴子吃果冻 栏目:开发技术

pandas的qcut可以把一组数字按大小区间进行分区,比如

data = pd.Series([0,8,1,5,3,7,2,6,10,4,9])

比如我要把这组数据分成两部分,一半大的,一半小的,如果是小的数,值就变成'small number',大的数,值就变成'large number':

print(pd.qcut(data,[0,0.5,1],labels=['small number','large number']))
small numbers
  large numbers
  small numbers
  small numbers
  small numbers
  large numbers
  small numbers
  large numbers
  large numbers
  small numbers
  large numbers
dtype: category
Categories (2, object): [small numbers < large numbers]

qcut() 方法第一个参数是数据,第二个参数定义区间的分割方法,比如这里把数字分成两半,那就是 [0, 0.5, 1] 如果要分成4份,就是 [0, 0.25, 0.5, 0.75, 1] ,也可以不是均分,比如 [0, 0.1, 0.2, 0.3, 1] ,这就就会按照 1:1:1:7 进行分布,比如:

data = pd.Series([0,8,1,5,3,7,2,6,10,4,9])
print(pd.qcut(data,[0, 0.1, 0.2, 0.3, 1],labels=['first 10%','second 10%','third 10%','70%']))
first 10%
      70%
   first 10%
      70%
   third 10%
      70%
  second 10%
      70%
      70%
      70%
     70%
dtype: category Categories 
(4, object): [first 10% < second 10% < third 10% < 70%]

当然,这里因为数据里有11个数,没法刚好按照 1:1:1:7 分,所以 0和1,都被分到了 'first10%' 这一类.

qcut() 方法第二个参数是要替换的值,就是对应区间的值应该替换成什么值,顺序和区间保持一致就好了,注意有几个区间,就要给几个值,不能多也不能少.

qcut与cut的主要区别:

qcut:传入参数,要将数据分成多少组,即组的个数,具体的组距是由代码计算

cut:传入参数,是分组依据。具体见示例  

1、qcut方法,参考链接:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html

1).参数:pandas.qcut(x,q,labels=None,retbins=False,precision=3,duplicates='raise')

>>>x 要进行分组的数据,数据类型为一维数组,或Series对象

>>>q 组数,即要将数据分成几组,后边举例说明

>>>labels 可以理解为组标签,这里注意标签个数要和组数相等

>>>retbins 默认为False,当为False时,返回值是Categorical类型(具有value_counts()方法),为True是返回值是元组

2).举例

pandas的qcut()方法详解

2.cut方法,官网链接:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html

1).参数:pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False,duplicates='raise')

2).举例

    pandas的qcut()方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI