温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中栈、队列与优先级队列的实现

发布时间:2021-06-03 16:35:32 来源:亿速云 阅读:268 作者:Leah 栏目:开发技术

本篇文章为大家展示了Python中栈、队列与优先级队列的实现,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

1、list

list是Python内置的列表数据结构,它支持栈的特性,有入栈和出栈操作。只不过用list实现栈性能不是特别好。

因为list内部是通过一个动态扩容的数组来实现的。当增减元素时就有可能会触发扩容操作。如果在list的头部增减元素,也会移动整个列表。

如要使用list来实现一个栈的话,可以使用list的append()(入栈)、pop()(出栈)方法。

>>> s = []
>>> s.append('one')
>>> s.append('two')
>>> s.append(3)
>>> s
['one', 'two', 3]
>>> s.pop()
3
>>> s.pop()
'two'
>>> s.pop()
'one'
>>> s.pop()
IndexError: pop from empty list

2、collections.deque

deque类是一种双端队列。在Python中它就是一个双向列表,可以以常用时间在两端执行添加和删除元素的操作,非常高效,所以它既可以实现栈也可以实现队列。

如果要在Python实现一个栈,那么应该优先选择deque,而不是list。

deque的入栈和出栈方法也分别是append()和pop()。

>>> from collections import deque
>>> s = deque()
>>> s.append('eat')
>>> s.append('sleep')
>>> s.append('code')
>>> s
deque(['eat', 'sleep', 'code'])
>>> s.pop()
'code'
>>> s.pop()
'sleep'
>>> s.pop()
'eat'
>>> s.pop()
IndexError: pop from an empty deque

3、queue.LifoQueue

顾名思义,这个就是一个栈。不过它是线程安全的,如果要在并发的环境下使用,那么就可以选择使用LifoQueue。

它入栈和出栈操作是使用put()和get(),其中get()在LifoQueue为空时会阻塞。

>>> from queue import LifoQueue
>>> s = LifoQueue()
>>> s.put('eat')
>>> s.put('sleep')
>>> s.put('code')
>>> s
<queue.LifoQueue object at 0x109dcfe48>
>>> s.get()
'code'
>>> s.get()
'sleep'
>>> s.get()
'eat'
>>> s.get()
# 阻塞并一直等待直到栈不为空

0x01 队列(Queue)

队列是一种FIFO(先进先出)的数据结构。它有入队(enqueue)、出队(dequeue)两种操作,而且也是常数时间的操作。
在Python中可以使用哪些数据结构来实现一个队列呢?

1、list

list可以实现一个队列,但它的入队、出队操作就不是非常高效了。因为list是一个动态列表,在队列的头部执行出队操作时,会发生整个元素的移动。

使用list来实现一个队列时,用append()执行入队操作,使用pop(0)方法在队列头部执行出队操作。由于在list的第一个元素进行操作,所以后续的元素都会向前移动一位。因此用list来实现队列是不推荐的。

>>> q = []
>>> q.append('1')
>>> q.append('2')
>>> q.append('three')

>>> q.pop(0)
'1'
>>> q.pop(0)
'2'
>>> q.pop(0)
'three'
>>> q.pop(0)
IndexError: pop from empty list

2、collections.deque

从上文我们已经知道deque是一个双向列表,它可以在列表两端以常数时间进行添加删除操作。所以用deque来实现一个队列是非常高效的。

deque入队操作使用append()方法,出队操作使用popleft()方法。

>>> from collections import deque
>>> q = deque()
>>> q.append('eat')
>>> q.append('sleep')
>>> q.append('code')
>>> q
deque(['eat', 'sleep', 'code'])
# 使用popleft出队
>>> q.popleft()
'eat'
>>> q.popleft()
'sleep'
>>> q.popleft()
'code'
>>> q.popleft()
IndexError: pop from an empty deque

3、queue.Queue

同样地,如果要在并发环境下使用队列,那么选择线程安全的queue.Queue。

与LifoQueue类似,入队和出队操作分别是put()和get()方法,get()在队列为空时会一直阻塞直到有元素入队。

>>> from queue import Queue
>>> q = Queue()
>>> q.put('eat')
>>> q.put('sleep')
>>> q.put('code')
>>> q
<queue.Queue object at 0x110564780>
>>> q.get()
'eat'
>>> q.get()
'sleep'
>>> q.get()
'code'
# 队列为空不要执行等待
>>> q.get_nowait()
_queue.Empty
>>> q.put('111')
>>> q.get_nowait()
'111'
>>> q.get()
# 队列为空时,会一直阻塞直到队列不为空

4、multiprocessing.Queue

多进程版本的队列。如果要在多进程环境下使用队列,那么应该选择multiprocessing.Queue。

同样地,它的入队出队操作分别是put()和get()。get()方法在队列为空,会一直阻塞直到队列不为空。

>>> from multiprocessing import Queue
>>> q = Queue()
>>> q.put('eat')
>>> q.put('sleep')
>>> q.put('code')
>>> q
<multiprocessing.queues.Queue object at 0x110567ef0>
>>> q.get()
'eat'
>>> q.get()
'sleep'
>>> q.get()
'code'
>>> q.get_nowait()
_queue.Empty
>>> q.get()
# 队列为空时,会一直阻塞直到队列不为空

0x02 优先级队列(PriorityQueue)

一个近乎排序的序列里可以使用优先级队列这种数据结构,它能高效获取最大或最小的元素。

在调度问题的场景中经常会用到优先级队列。它主要有获取最大值或最小值的操作和入队操作。

1、list

使用list可以实现一个优先级队列,但它并不高效。因为当要获取最值时需要排序,然后再获取最值。一旦有新的元素加入,再次获取最值时,又要重新排序。所以并推荐使用。

2、heapq

一般来说,优先级队列都是使用堆这种数据结构来实现。而heapq就是Python标准库中堆的实现。heapq默认情况下实现的是最小堆。

入队操作使用heappush(),出队操作使用heappop()。

>>> import heapq
>>> q = []
>>> heapq.heappush(q, (2, 'code'))
>>> heapq.heappush(q, (1, 'eat'))
>>> heapq.heappush(q, (3, 'sleep'))
>>> q
[(1, 'eat'), (2, 'code'), (3, 'sleep')]
>>> while q:
	next_item = heapq.heappop(q)
	print(next_item)

	
(1, 'eat')
(2, 'code')
(3, 'sleep')

3、queue.PriorityQueue

queue.PriorityQueue内部封装了heapq,不同的是它是线程安全的。在并发环境下应该选择使用PriorityQueue。

>>> from queue import PriorityQueue
>>> q = PriorityQueue()
>>> q.put((2, 'code'))
>>> q.put((1, 'eat'))
>>> q.put((3, 'sleep'))
>>> while not q.empty():
	next_item = q.get()
	print(next_item)

(1, 'eat')
(2, 'code')
(3, 'sleep')

上述内容就是Python中栈、队列与优先级队列的实现,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI