这篇文章将为大家详细讲解有关python中乘法dot和对应分量相乘multiply的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
向量点乘 (dot) 和对应分量相乘 (multiply) :
>>> a array([1, 2, 3]) >>> b array([ 1., 1., 1.]) >>> np.multiply(a,b) array([ 1., 2., 3.]) >>> np.dot(a,b) 6.0
矩阵乘法 (dot) 和对应分量相乘 (multiply) :
>>> c matrix([[1, 2, 3]]) >>> d matrix([[ 1., 1., 1.]]) >>> np.multiply(c,d) matrix([[ 1., 2., 3.]]) >>> np.dot(c,d) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
写代码过程中,*表示对应分量相乘 (multiply) :
>>> a*b array([ 1., 2., 3.]) >>> c*d Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\matrixlib\defmatrix.py", line 343, in __mul__ return N.dot(self, asmatrix(other)) ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
关于“python中乘法dot和对应分量相乘multiply的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。