这篇文章给出了如何绘制中国人口密度图,但是运行存在一些问题,我在一些地方进行了修改。
本人使用的IDE是anaconda,因此事先在anaconda prompt 中安装Basemap包
conda install Basemap
新建文档,导入需要的包
import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from matplotlib.patches import Polygon from matplotlib.colors import rgb2hex import numpy as np import pandas as pd
Basemap中不包括中国省界,需要在下面网站下载中国省界,点击Shapefile下载。
生成中国大陆省界图片。
plt.figure(figsize=(16,8)) m = Basemap( llcrnrlon=77, llcrnrlat=14, urcrnrlon=140, urcrnrlat=51, projection='lcc', lat_1=33, lat_2=45, lon_0=100 ) m.drawcountries(linewidth=1.5) m.drawcoastlines() m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
去国家统计局网站下载人口各省,只需保留地区和总人口即可,保存为csv格式并改名为pop.csv。
读取数据,储存为dataframe格式,删去地名之中的空格,并设置地名为dataframe的index。
df = pd.read_csv('pop.csv') new_index_list = [] for i in df["地区"]: i = i.replace(" ","") new_index_list.append(i) new_index = {"region": new_index_list} new_index = pd.DataFrame(new_index) df = pd.concat([df,new_index], axis=1) df = df.drop(["地区"], axis=1) df.set_index("region", inplace=True)
将Basemap中的地区与我们下载的csv中的人口数据对应起来,建立字典。注意,Basemap中的地名与csv文件中的地名并不完全一样,需要进行一些处理。
provinces = m.states_info statenames=[] colors = {} cmap = plt.cm.YlOrRd vmax = 100000000 vmin = 3000000 for each_province in provinces: province_name = each_province['NL_NAME_1'] p = province_name.split('|') if len(p) > 1: s = p[1] else: s = p[0] s = s[:2] if s == '黑龍': s = '黑龙江' if s == '内蒙': s = '内蒙古' statenames.append(s) pop = df['人口数'][s] colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]
最后画出图片即可
ax = plt.gca() for nshape, seg in enumerate(m.states): color = rgb2hex(colors[statenames[nshape]]) poly = Polygon(seg, facecolor=color, edgecolor=color) ax.add_patch(poly) plt.show()
完整代码如下
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from matplotlib.patches import Polygon from matplotlib.colors import rgb2hex import numpy as np import pandas as pd plt.figure(figsize=(16,8)) m = Basemap( llcrnrlon=77, llcrnrlat=14, urcrnrlon=140, urcrnrlat=51, projection='lcc', lat_1=33, lat_2=45, lon_0=100 ) m.drawcountries(linewidth=1.5) m.drawcoastlines() m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True) df = pd.read_csv('pop.csv') new_index_list = [] for i in df["地区"]: i = i.replace(" ","") new_index_list.append(i) new_index = {"region": new_index_list} new_index = pd.DataFrame(new_index) df = pd.concat([df,new_index], axis=1) df = df.drop(["地区"], axis=1) df.set_index("region", inplace=True) provinces = m.states_info statenames=[] colors = {} cmap = plt.cm.YlOrRd vmax = 100000000 vmin = 3000000 for each_province in provinces: province_name = each_province['NL_NAME_1'] p = province_name.split('|') if len(p) > 1: s = p[1] else: s = p[0] s = s[:2] if s == '黑龍': s = '黑龙江' if s == '内蒙': s = '内蒙古' statenames.append(s) pop = df['人口数'][s] colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3] ax = plt.gca() for nshape, seg in enumerate(m.states): color = rgb2hex(colors[statenames[nshape]]) poly = Polygon(seg, facecolor=color, edgecolor=color) ax.add_patch(poly) plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。