本篇文章给大家分享的是有关panda中怎么利用read_csv()方法读取文件,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
如下:
数据文件: 上海机场 (sh700009) | 24.11 | 3.58 |
东风汽车 (sh700006) | 74.25 | 1.74 |
中国国贸 (sh700007) | 26.38 | 2.66 |
包钢股份 (sh700010) | 61.01 | 2.35 |
武钢股份 (sh700005) | 75.85 | 1.3 |
浦发银行 (sh700000) | 6.65 | 0.96 |
在使用read_csv() API读取CSV文件时求取某一列数据比较大小时,
df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c']) df.b>20
报错
TypeError:'>'not supported between instances of 'str' and 'int'
从返回的错误信息可知应该是数据类型错误,读回来的是‘str'
in : df.dtypes out: a object b object c object dtype: object
由此可知 df.b 类型是 object
查阅read_csv()文档 配置:
dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (unsupported with engine='python'). Use str or object to preserve and not interpret dtype. New in version 0.20.0: support for the Python parser.
可知默认使用‘str'或‘object'保存
因此在读取时只需要修改 'dtype' 配置就可以
df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c'],dtype={'b':np.folat64})
以上就是panda中怎么利用read_csv()方法读取文件,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。