温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用Opencv Hough算法怎么实现图片中直线检测

发布时间:2021-06-02 16:52:21 来源:亿速云 阅读:183 作者:Leah 栏目:编程语言

这期内容当中小编将会给大家带来有关使用Opencv Hough算法怎么实现图片中直线检测,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

(1)载入需检测的图及显示原图

Mat g_srcImage = imread("C:\\Users\\lenovo\\Pictures\\Saved Pictures\\Q.jpg"); //图片所放路径  
imshow("【原始图】", g_srcImage);

(2)为显示不同的效果图而设置滑动条

namedWindow("【效果图】", 1);
createTrackbar("值", "【效果图】", &g_nthreshold, 200, on_HoughLines);

(3)图像处理及显示

//进行边缘检测和转化为灰度图 
 Canny(g_srcImage, g_midImage, 50, 200, 3);//进行一次canny边缘检测 
 cvtColor(g_midImage, g_dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图 
 //调用一次回调函数,调用一次HoughLinesP函数 
 on_HoughLines(g_nthreshold, 0);
 HoughLinesP(g_midImage, g_lines, 1, CV_PI / 180, 80, 50, 10);
 //显示效果图  
 imshow("【效果图】", g_dstImage);
 waitKey(0);
 return 0;

(4)主要函数:on_HoughLines()

//定义局部变量储存全局变量 
 Mat dstImage = g_dstImage.clone();
 Mat midImage = g_midImage.clone();
 //调用HoughLinesP函数 
 vector<Vec4i> mylines;
 HoughLinesP(midImage, mylines, 1, CV_PI / 180, g_nthreshold + 1, 50, 10);
 //循环遍历绘制每一条线段 
 for (size_t i = 0; i < mylines.size(); i++)
 {
 Vec4i l = mylines[i];
 line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(23, 180, 55), 1, CV_AA);
 }
 //显示图像 
 imshow("【效果图】", dstImage);

(5)源代码:

#include <opencv2/opencv.hpp> 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
 
using namespace std;
using namespace cv;
 
 
Mat g_srcImage, g_dstImage, g_midImage;//原始图、中间图和效果图 
vector<Vec4i> g_lines;//定义一个矢量结构g_lines用于存放得到的线段矢量集合 
//变量接收的TrackBar位置参数 
int g_nthreshold = 100;
 
static void on_HoughLines(int, void*);//回调函数 
static void ShowHelpText();
 
int main()
{
 //改变console字体颜色 
 system("color 3F");
 ShowHelpText();
 //载入原始图和Mat变量定义   
 Mat g_srcImage = imread("C:\\Users\\lenovo\\Pictures\\Saved Pictures\\Q.jpg"); 
 //显示原始图  
 imshow("【原始图】", g_srcImage);
 //创建滚动条 
 namedWindow("【效果图】", 1);
 createTrackbar("值", "【效果图】", &g_nthreshold, 200, on_HoughLines);
 //进行边缘检测和转化为灰度图 
 Canny(g_srcImage, g_midImage, 50, 200, 3);//进行一次canny边缘检测 
 cvtColor(g_midImage, g_dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图 
 //调用一次回调函数,调用一次HoughLinesP函数 
 on_HoughLines(g_nthreshold, 0);
 HoughLinesP(g_midImage, g_lines, 1, CV_PI / 180, 80, 50, 10);
 //显示效果图  
 imshow("【效果图】", g_dstImage);
 waitKey(0);
 return 0;
}
static void on_HoughLines(int, void*)
{
 //定义局部变量储存全局变量 
 Mat dstImage = g_dstImage.clone();
 Mat midImage = g_midImage.clone();
 //调用HoughLinesP函数 
 vector<Vec4i> mylines;
 HoughLinesP(midImage, mylines, 1, CV_PI / 180, g_nthreshold + 1, 50, 10);
 //循环遍历绘制每一条线段 
 for (size_t i = 0; i < mylines.size(); i++)
 {
 Vec4i l = mylines[i];
 line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(23, 180, 55), 1, CV_AA);
 }
 //显示图像 
 imshow("【效果图】", dstImage);
}
static void ShowHelpText()
{
 //输出一些帮助信息 
 printf("\n\n\n\t通过调整滚动条观察图像的不同效果~\n\n");
 printf("\n\n\t\t\t by浅墨");
}

上述就是小编为大家分享的使用Opencv Hough算法怎么实现图片中直线检测了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI