java 矩阵乘法的mapreduce程序实现
map函数:对于矩阵M中的每个元素m(ij),产生一系列的key-value对<(i,k),(M,j,m(ij))>
其中k=1,2.....知道矩阵N的总列数;对于矩阵N中的每个元素n(jk),产生一系列的key-value对<(i , k) , (N , j ,n(jk)>, 其中i=1,2.......直到i=1,2.......直到矩阵M的总列数。
map
package com.cb.matrix; import static org.mockito.Matchers.intThat; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileSplit; import org.apache.hadoop.mapreduce.Mapper; import com.sun.org.apache.bcel.internal.generic.NEW; public class MatrixMapper extends Mapper<Object, Text, Text, Text> { private Text map_key=new Text(); private Text map_value= new Text(); private int columnN; private int rowM; /** * 执行map()函数前先由conf.get()得到main函数中提供的必要变量 * 也就是从输入文件名中得到的矩阵维度信息 */ @Override protected void setup(Mapper<Object, Text, Text, Text>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration config=context.getConfiguration(); columnN=Integer.parseInt(config.get("columnN")); rowM =Integer.parseInt(config.get("rowM")); } @Override protected void map(Object key, Text value, Mapper<Object, Text, Text, Text>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub //得到文件名,从而区分输入矩阵M和N FileSplit fileSplit=(FileSplit)context.getInputSplit(); String fileName=fileSplit.getPath().getName(); if (fileName.contains("M")) { String[] tuple =value.toString().split(","); int i =Integer.parseInt(tuple[0]); String[] tuples=tuple[1].split("\t"); int j=Integer.parseInt(tuples[0]); int Mij=Integer.parseInt(tuples[1]); for(int k=1;k<columnN+1;k++){ map_key.set(i+","+k); map_value.set("M"+","+j+","+Mij); context.write(map_key, map_value); } } else if(fileName.contains("N")){ String[] tuple=value.toString().split(","); int j=Integer.parseInt(tuple[0]); String[] tuples =tuple[1].split("\t"); int k=Integer.parseInt(tuples[0]); int Njk=Integer.parseInt(tuples[1]); for(int i=1;i<rowM+1;i++){ map_key.set(i+","+k); map_value.set("N"+","+j+","+Njk); context.write(map_key, map_value); } } } }
reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。
reducer
package com.cb.matrix; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MatrixReducer extends Reducer<Text, Text, Text, Text> { private int sum=0; private int columnM; @Override protected void setup(Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration conf =context.getConfiguration(); columnM=Integer.parseInt(conf.get("columnM")); } @Override protected void reduce(Text arg0, Iterable<Text> arg1, Reducer<Text, Text, Text, Text>.Context arg2) throws IOException, InterruptedException { // TODO Auto-generated method stub int[] M=new int[columnM+1]; int[] N=new int[columnM+1]; for(Text val:arg1){ String[] tuple=val.toString().split(","); if(tuple[0].equals("M")){ M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); }else{ N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); } for(int j=1;j<columnM+1;j++){ sum+=M[j]*N[j]; } arg2.write(arg0, new Text(Integer.toString(sum))); sum=0; } } }
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。