这篇文章将为大家详细讲解有关scrapy在python爬虫使用的注意事项有哪些,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
1.如果需要大批量分布式爬取,建议采用Redis数据库存储,可安装scrapy-redis,使用redis数据库来替换scrapy原本使用的队列结构(deque),并配合其它数据库存储,例如MySQL或者MongoDB,爬取效率将会极大提高。并且其自带的dupefilter.py负责执行requst的去重,使用redis的set数据结构,通过settings文件正确设置后,即便停止scrapy爬虫,当下次重新开始后也能自动去重。原因就是在redis已经存储了request的信息。
2.当涉及到代理IP,Headers头中间请求信息处理的时候,可以通过中间件Middleware来实现。Spider中间件是介入到Scrapy的spider处理机制的钩子框架,可以添加代码来处理发送给 Spiders的response及spider产生的item和request。
3.合理设置settings文件,需要熟练掌握settings的各种设置。
4.可以重新定义def start_requests(self)函数来加载cookie信息,form信息的提交用scrapy.FormRequest以及scrapy.FormRequest.from_response这两个函数,scrapy.FormRequest.from_response能实现自动提交form数据。
5.采用Scrapy+phantomJS。 downloadMiddleware 对从 scheduler 送来的 Request 对象在请求之前进行预处理,可以实现添加 headers, user_agent,还有 cookie 等功能 。但也可以通过中间件直接返回 HtmlResponse 对象,略过请求的模块,直接扔给 response 的回调函数处理。
class CustomMetaMiddleware(object): def process_request(self,request,spider): dcap = dict(DesiredCapabilities.PHANTOMJS) dcap["phantomjs.page.settings.loadImages"] = False dcap["phantomjs.page.settings.resourceTimeout"] = 10 driver = webdriver.PhantomJS("D:xx\xx",desired_capabilities=dcap) driver.get(request.url) body = driver.page_source.encode('utf8') url = driver.current_url driver.quit() return HtmlResponse(request.url,body=body)
关于scrapy在python爬虫使用的注意事项有哪些就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。