小编给大家分享一下如何使用Python实现Newton插值法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
def diff(xi,yi,n):
"""
param xi:插值节点xi
param yi:插值节点yi
param n: 求几阶差商
return: n阶差商
"""
if len(xi) != len(yi): #xi和yi必须保证长度一致
return
else:
diff_quot = [[] for i in range(n)]
for j in range(1,n+1):
if j == 1:
for i in range(n+1-j):
diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1]))
else:
for i in range(n+1-j):
diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j]))
return diff_quot
测试一下:
xi = [1.615,1.634,1.702,1.828] yi = [2.41450,2.46259,2.65271,3.03035] n = 3 print(diff(xi,yi,n))
返回的差商结果为:
[[2.53105263157897, 2.7958823529411716, 2.997142857142854], [3.0440197857724347, 1.0374252793901158], [-9.420631485362996]]
def Newton(x):
f = yi[0]
v = []
r = 1
for i in range(n):
r *= (x - xi[i])
v.append(r)
f += diff_quot[i][0] * v[i]
return f
测试一下:
x = 1.682
print(Newton(x))
结果为:
2.5944760289639732
def Newton(xi,yi,n,x):
"""
param xi:插值节点xi
param yi:插值节点yi
param n: 求几阶差商
param x: 代求近似值
return: n阶差商
"""
if len(xi) != len(yi): #xi和yi必须保证长度一致
return
else:
diff_quot = [[] for i in range(n)]
for j in range(1,n+1):
if j == 1:
for i in range(n+1-j):
diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1]))
else:
for i in range(n+1-j):
diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j]))
print(diff_quot)
f = yi[0]
v = []
r = 1
for i in range(n):
r *= (x - xi[i])
v.append(r)
f += diff_quot[i][0] * v[i]
return f
以上是“如何使用Python实现Newton插值法”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。