怎么在Python中使用numpy创建空数组?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
有一个shape为(308, 2)的二维数组,以及单独的一个数字,需要保存到csv文件中,这个单独的数字让其保存到第3列第一行的位置。
首先要想把一个(308, 2)的二维数组和一个数字给拼接起来,直接拼接没办法实现,因为行数和列数都不同的两个ndarry是无法拼接的(此处按照目前我学的理解,是无法直接拼接的,如果可以的话,麻烦评论一下)。
然后我首先想到的解决方法就是先建一个(308,1)的二维数组,然后令这个二维数组的第一个元素设置成那个数字,然后进行拼接,保存。
为使数据可以显示完全,以仅以3行数据为例:
>>> a = np.ones((3,2))
>>> b = 0.2
>>> _b = np.empty((3,1))
>>> _b[0, 0] = b
>>> c = np.c_[a, _b]
>>> print(c)
[[1.00000000e+000 1.00000000e+000 2.00000000e-001]
[1.00000000e+000 1.00000000e+000 2.12199579e-313]
[1.00000000e+000 1.00000000e+000 2.54639495e-313]]
>>>
但是这样,我把结果保存到文件时,第3列的除第一行,其他的行是有数据的,我不想让它显示数据。
也就是empty这个函数只是创建一个未初始化的数组,实际上里面的数值都是垃圾值。
那么如何去实现视觉上没有数据呢,其实利用空的字符串就可以了。
所以就通过np.ones设置dtype为str,此时生成的是元素都为空字符串的数组,(具体的原因还不清楚),然后此时若直接设置第一行的元素为某个值,是不行的,会自动变为'0‘,只有在拼接之后,然后再给它赋值才可以,这个地方我不是很理解,但是结果是正确的。
y_true = np.ones((3, 1), dtype=np.int)
y_pred = np.ones((3, 1), dtype=np.int)
y = np.c_[y_true, y_pred]
accuracy = np.zeros(shape=(y_true.shape[0], 1), dtype=np.str)
# 此时若设置accuracy[0, 0] = '0.89',最终accuracy[0, 0]存的是'0',具体原因还不清楚
res = np.c_[y, accuracy] # 先拼接起来
res[0, 2] = '0.89' # 然后再设置就可以了
res = pd.DataFrame(res, columns=['y_true', 'y_pred', 'accuracy'])
res.to_csv('1.csv') # 保存到文件中
从文件中读取的时候,直接读出来,空白的地方被赋值为nan
a = pd.read_csv('1.csv', usecols=(1, 2, 3))
a = a.values
print(a, type(a), a.dtype)
关于np.nan需要注意的地方如下:
np.nan不是空对象。
对列表中的nan进行操作时不能用"==np.nan"来判断。只能用np.isnan()来操作。
np.nan的数据类型是float。
import numpy as np
np.nan == np.nan
Out[3]: False
aa = np.array([1,2,3,np.nan,np.nan,4,5,np.nan])
aa
Out[5]: array([ 1., 2., 3., nan, nan, 4., 5., nan])
aa[aa==np.nan] = 100 #错误方式
aa
Out[7]: array([ 1., 2., 3., nan, nan, 4., 5., nan])
aa[np.isnan(aa)] = 100 #对nan操作的正确方式
aa
Out[9]: array([ 1., 2., 3., 100., 100., 4., 5., 100.])
type(np.nan)
Out[10]: float
python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。