温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch中优化器optimizer.param_groups用法的示例分析

发布时间:2021-05-31 14:26:06 来源:亿速云 阅读:3896 作者:小新 栏目:开发技术

小编给大家分享一下pytorch中优化器optimizer.param_groups用法的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

optimizer.param_groups: 是长度为2的list,其中的元素是2个字典;

optimizer.param_groups[0]: 长度为6的字典,包括[‘amsgrad', ‘params', ‘lr', ‘betas', ‘weight_decay', ‘eps']这6个参数;

optimizer.param_groups[1]: 好像是表示优化器的状态的一个字典;

import torch
import torch.optim as optimh3
w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)
[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]
Per the docs, the add_param_group method accepts a param_group parameter that is a dict. Example of use:h3import torch
import torch.optim as optimh3
w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)
givesh3[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]
nowh3o.add_param_group({'params': w2})
print(o.param_groups)
[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0},
 {'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[-0.0560,  0.4585, -0.7589],
           [-0.1994,  0.4557,  0.5648],
           [-0.1280, -0.0333, -1.1886]])],
  'weight_decay': 0}]
# 动态修改学习率
for param_group in optimizer.param_groups:
    param_group["lr"] = lr 
# 得到学习率optimizer.param_groups[0]["lr"] h3# print('查看optimizer.param_groups结构:')
# i_list=[i for i in optimizer.param_groups[0].keys()]
# print(i_list)    
['amsgrad', 'params', 'lr', 'betas', 'weight_decay', 'eps']

补充:pytorch中的优化器总结

以SGD优化器为例:

# -*- coding: utf-8 -*-
#@Time    :2019/7/3 22:31
#@Author  :XiaoMa
 
from torch import nn as nn
import torch as t
from torch.autograd import Variable as V
#定义一个LeNet网络
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.features=nn.Sequential(
            nn.Conv2d(3,6,5),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(6,16,5),
            nn.ReLU(),
            nn.MaxPool2d(2,3)
        )
        
        self.classifier=nn.Sequential(\
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
            )
    def forward(self, x):
        x=self.features(x)
        x=x.view(-1,16*5*5)
        x=self.classifier(x)
        return x
net=Net()
 
from torch import optim #优化器
optimizer=optim.SGD(params=net.parameters(),lr=1)
optimizer.zero_grad()   #梯度清零,相当于net.zero_grad()
 
input=V(t.randn(1,3,32,32))
output=net(input)
output.backward(output)     #fake backward
optimizer.step()    #执行优化
 
#为不同子网络设置不同的学习率,在finetune中经常用到
#如果对某个参数不指定学习率,就使用默认学习率
optimizer=optim.SGD(
    [{'param':net.features.parameters()},    #学习率为1e-5
    {'param':net.classifier.parameters(),'lr':1e-2}],lr=1e-5
)
 
#只为两个全连接层设置较大的学习率,其余层的学习率较小
special_layers=nn.ModuleList([net.classifier[0],net.classifier[3]])
special_layers_params=list(map(id,special_layers.parameters()))
base_params=filter(lambda p:id(p) not in special_layers_params,net.parameters())
 
optimizer=t.optim.SGD([
    {'param':base_params},
    {'param':special_layers.parameters(),'lr':0.01}
],lr=0.001)

调整学习率主要有两种做法。

一种是修改optimizer.param_groups中对应的学习率,另一种是新建优化器(更简单也是更推荐的做法),由于optimizer十分轻量级,构建开销很小,故可以构建新的optimizer。

但是新建优化器会重新初始化动量等状态信息,这对使用动量的优化器来说(如自带的momentum的sgd),可能会造成损失函数在收敛过程中出现震荡。

如:

#调整学习率,新建一个optimizer
old_lr=0.1
optimizer=optim.SGD([
                {'param':net.features.parameters()},
                {'param':net.classifiers.parameters(),'lr':old_lr*0.5}],lr=1e-5)

看完了这篇文章,相信你对“pytorch中优化器optimizer.param_groups用法的示例分析”有了一定的了解,如果想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI