温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何在TensorFlow中使用tf.batch_matmul()

发布时间:2021-06-02 16:23:03 来源:亿速云 阅读:236 作者:Leah 栏目:开发技术

今天就跟大家聊聊有关如何在TensorFlow中使用tf.batch_matmul(),可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

TensorFlow中tf.batch_matmul()用法

如果有两个三阶张量,size分别为

a.shape = [100, 3, 4]
b.shape = [100, 4, 5]
c = tf.batch_matmul(a, b)

则c.shape = [100, 3, 5] //将每一对 3x4 的矩阵与 4x5 的矩阵分别相乘。batch_size不变

100为张量的batch_size。剩下的两个维度为数据的维度。

不过新版的tensorflow已经移除了上面的函数,使用时换为tf.matmul就可以了。与上面注释的方式是同样的。

附: 如果是更高维度。例如(a, b, m, n) 与(a, b, n, k)之间做matmul运算。则结果的维度为(a, b, m, k)。

TensorFlow如何实现batch_matmul

我们知道,在tensorflow早期版本中有tf.batch_matmul()函数,可以实现多维tensor和低维tensor的直接相乘,这在使用过程中非常便捷。

但是最新版本的tensorflow现在只有tf.matmul()函数可以使用,不过只能实现同维度的tensor相乘, 下面的几种方法可以实现batch matmul的可能。

例如: tensor A(batch_size,m,n), tensor B(n,k),实现batch matmul 使得A * B。

方法1: 利用tf.matmul()

对tensor B 进行增维和扩展

A = tf.Variable(tf.random_normal(shape=(batch_size, 2, 3)))
B = tf.Variable(tf.random_normal(shape=(3, 5)))
B_exp = tf.tile(tf.expand_dims(B,0),[batch_size, 1, 1]) #先进行增维再扩展
C = tf.matmul(A, B_exp)

方法2: 利用tf.reshape()

对tensor A 进行reshape操作,然后利用tf.matmul()

A = tf.Variable(tf.random_normal(shape=(batch_size, 2, 3)))
B = tf.Variable(tf.random_normal(shape=(3, 5)))
A = tf.reshape(A, [-1, 3])
C = tf.reshape(tf.matmul(A, B), [-1, 2, 5])

方法3: 利用tf.scan()

利用tf.scan() 对tensor按第0维进行展开的特性

A = tf.Variable(tf.random_normal(shape=(batch_size, 2, 3)))
B = tf.Variable(tf.random_normal(shape=(3, 5)))
initializer = tf.Variable(tf.random_normal(shape=(2,5)))
C = tf.scan(lambda a,x: tf.matmul(x, B), A, initializer)

方法4: 利用tf.einsum()

A = tf.Variable(tf.random_normal(shape=(batch_size, 2, 3)))
B = tf.Variable(tf.random_normal(shape=(3, 5)))
C = tf.einsum('ijk,kl->ijl',A,B)

看完上述内容,你们对如何在TensorFlow中使用tf.batch_matmul()有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI