温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中怎么处理大数据

发布时间:2021-07-05 17:30:49 来源:亿速云 阅读:745 作者:Leah 栏目:编程语言

本篇文章为大家展示了Python中怎么处理大数据,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

import pandas as pd import collections df = pd.read_excel("D:/Download/chrome/sample-salesv3.xlsx") #print (df.head(10)) df["date"] = pd.to_datetime(df["date"]) # print (df.head(10)) df1 = df.set_index("date").resample("M")['ext price'].sum() # print(df1.head())
Python中怎么处理大数据

统计每个用户每个月"ext price"这个属性的sum值,利用Grouper

df2 = df.groupby(["name",pd.Grouper(key = "date",freq="M")])["ext price"] print(df2.head(10))
Python中怎么处理大数据

Agg

agg函数,它提供基于列的聚合操作。而groupby可以看做是基于行,或者说index的聚合操作。

从实现上看,groupby返回的是一个DataFrameGroupBy结构,这个结构必须调用聚合函数(如sum)之后,才会得到结构为Series的数据结果。

而agg是DataFrame的直接方法,返回的也是一个DataFrame。当然,很多功能用sum、mean等等也可以实现。但是agg更加简洁,  而且传给它的函数可以是字符串,也可以自定义,参数是column对应的子DataFrame

获取"ext price","quantity","unit price"3列的各自的累计值和均值

df3 = df[["ext price","quantity","unit price"]].agg(["sum","mean"]) print(df3.head())
Python中怎么处理大数据

可以针对不同的列使用不同的聚合函数

df4 = df.agg({"ext price":["sum","mean"],"quantity":["sum","mean"],"unit price":["mean"]}) print(df4.head())
Python中怎么处理大数据

也可以自定义函数,比如,统计sku中,购买次数最多的产品编号,通过lambda表达式来做。

#统计sku中,购买次数最多的产品编号 get_max = lambda x:x.value_counts(dropna=False).index[0] get_max.__name__ = "most frequent" df5 = df.agg({"ext price":["sum","mean"],  "quantity":["sum","mean"],  "unit price":["mean"],  "sku":[get_max]  }) print(df5)
Python中怎么处理大数据

如果希望输出的列按照某个顺序排列,可以使用collections的OrderedDict

agg_dict = {  "ext price":["sum","mean"],  "quantity":["sum","mean"],  "unit price":["mean"],  "sku":[get_max] } #按照列名的长度排序。OrderedDict的顺序是跟插入顺序一致的 df6 = df.agg(collections.OrderedDict(sorted(agg_dict.items(),key=lambda x:len(x[0])))) print(df6)
Python中怎么处理大数据

上述内容就是Python中怎么处理大数据,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI