温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python3最小二乘法拟合实例

发布时间:2020-06-25 01:10:19 来源:网络 阅读:3843 作者:YU儿 栏目:编程语言

最小二乘法拟合

       最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小

     假设有一组实验数据(x[i], y[i]),我们知道它们之间的函数关系:y = f(x),通过这些已知信息,需要确定函数中的一些参数项。例如,如果f是一个线型函数f(x) = k * x + b, 那么参数k和b就是我们需要确定的值。如果将这些参数组用p来表示的话, 那么我们就是需要找到一组p值使得如下公式中的S函数最小:

                                                                            

python3最小二乘法拟合实例

这种算法被称为最小二乘法拟合。

scipy中的子函数库optimize已经提供了实现最小二乘拟合算法的函数leastsq。下面是用leastsq进行数据拟合的一个例子。

import numpy as np

from scipy.optimize import leastsq

import pylab as pl

def func(x, p):

    """

    数据拟合所用的函数:A * sin(2 * pi * k * x + theta)

    """

    A, k, theta = p

    return A * np.sin(2 * np.pi * k * x + theta)

def residuals(p, y, x):

    """

    实验数据x,y和拟合函数之间的差, p为拟合需要找到的系数

    """

    return y - func(x, p)

x = np.linspace(0, -2 * np.pi, 100)

A, k, theta = 10, 0.34, np.pi / 6 #真实数据的函数参数

y0 = func(x, [A, k, theta]) #真实的y数据

y1 = y0 + 2 * np.random.randn(len(x)) #加入噪声之后的数据


p0 = [7, 0.2, 0] #第一次猜测的拟合参数


#调用leastsq进行数据拟合

#residuals为计算误差的函数

#p0为拟合参数的初始值

#args为需要拟合的实验数据

plsq = leastsq(residuals, p0, args = (y1, x))

print("真实参数:", [A, k, theta])

print("拟合参数:", plsq[0]) #实验数据拟合后的参数

pl.plot(x, y0, label = u"真实数据")

pl.plot(x, y1, label = u"带噪声的实验数据")

pl.plot(x, func(x, plsq[0]), label =u"拟合数据")

pl.legend()

pl.show()

python3最小二乘法拟合实例

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI