本篇内容主要讲解“Spark-Streaming如何处理数据到mysql中”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Spark-Streaming如何处理数据到mysql中”吧!
数据表如下:
create database test;
use test;
DROP TABLE IF EXISTS car_gps;
CREATE TABLE IF NOT EXISTS car_gps(
deployNum VARCHAR(30) COMMENT '调度编号',
plateNum VARCHAR(10) COMMENT '车牌号',
timeStr VARCHAR(20) COMMENT '时间戳',
lng VARCHAR(20) COMMENT '经度',
lat VARCHAR(20) COMMENT '纬度',
dbtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT '数据入库时间',
PRIMARY KEY(deployNum, plateNum, timeStr))
首先引入mysql的驱动
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency>
package com.hoult.Streaming.work
import java.sql.{Connection, DriverManager, PreparedStatement}
import java.util.Properties
import com.hoult.structed.bean.BusInfo
import org.apache.spark.sql.ForeachWriter
class JdbcHelper extends ForeachWriter[BusInfo] {
var conn: Connection = _
var statement: PreparedStatement = _
override def open(partitionId: Long, epochId: Long): Boolean = {
if (conn == null) {
conn = JdbcHelper.openConnection
}
true
}
override def process(value: BusInfo): Unit = {
//把数据写入mysql表中
val arr: Array[String] = value.lglat.split("_")
val sql = "insert into car_gps(deployNum,plateNum,timeStr,lng,lat) values(?,?,?,?,?)"
statement = conn.prepareStatement(sql)
statement.setString(1, value.deployNum)
statement.setString(2, value.plateNum)
statement.setString(3, value.timeStr)
statement.setString(4, arr(0))
statement.setString(5, arr(1))
statement.executeUpdate()
}
override def close(errorOrNull: Throwable): Unit = {
if (null != conn) conn.close()
if (null != statement) statement.close()
}
}
object JdbcHelper {
var conn: Connection = _
val url = "jdbc:mysql://hadoop1:3306/test?useUnicode=true&characterEncoding=utf8"
val username = "root"
val password = "123456"
def openConnection: Connection = {
if (null == conn || conn.isClosed) {
val p = new Properties
Class.forName("com.mysql.jdbc.Driver")
conn = DriverManager.getConnection(url, username, password)
}
conn
}
}
package com.hoult.Streaming.work
import com.hoult.structed.bean.BusInfo
import org.apache.spark.sql.{Column, DataFrame, Dataset, SparkSession}
object KafkaToJdbc {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "root")
//1 获取sparksession
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName(KafkaToJdbc.getClass.getName)
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
import spark.implicits._
//2 定义读取kafka数据源
val kafkaDf: DataFrame = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "linux121:9092")
.option("subscribe", "test_bus_info")
.load()
//3 处理数据
val kafkaValDf: DataFrame = kafkaDf.selectExpr("CAST(value AS STRING)")
//转为ds
val kafkaDs: Dataset[String] = kafkaValDf.as[String]
//解析出经纬度数据,写入redis
//封装为一个case class方便后续获取指定字段的数据
val busInfoDs: Dataset[BusInfo] = kafkaDs.map(BusInfo(_)).filter(_ != null)
//将数据写入MySQL表
busInfoDs.writeStream
.foreach(new JdbcHelper)
.outputMode("append")
.start()
.awaitTermination()
}
}
kafka-topics.sh --zookeeper linux121:2181/myKafka --create --topic test_bus_info --partitions 2 --replication-factor 1
kafka-console-producer.sh --broker-list linux121:9092 --topic test_bus_info
到此,相信大家对“Spark-Streaming如何处理数据到mysql中”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
亿速云「云数据库 MySQL」免部署即开即用,比自行安装部署数据库高出1倍以上的性能,双节点冗余防止单节点故障,数据自动定期备份随时恢复。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/3735317/blog/4965318