一般的移动社交网络可以认为是由人和内容组成的一个双模网络,在添加位置信息,或者对内容的类型进行细分之后,可以演变成多模复杂网络。信息内容在社交网络中具有相当重要的地位,因为从本质上讲,社交的目的应该是信息的交换。信息、观念和看法的改变是相对较快的,信息内容和社交结构最终构成一个双重反馈回路,社交结构影响信息扩散,而信息则影响社会结构的变化。 如何看待社交网络中信息内容的价值呢?本着面向对象的思想,在这个双模网络中有两类节点:信息内容和人。 人和信息之间的关系是双向的, 因而可以从三个方面评估信息内容的价值:信息对人的影响Ve,人对信息的评价反馈Vf,信息内容本体Vs。
根据社交网络中信息内容和我之间的关系,可以分为以下多个维度:
相关性(Relevance):
我是否关心?这条内容与我什么关系呢?
显著性(slinky):
这是相关性在时间维度上的体现,表明我现在或在未来一段时间内释放是否关心改内容?
共鸣性(Resonance):
信息的内容和我所相信的内容是否一致?
严重性(severity):
信息的内容有多好或有多坏?
紧迫性(immediacy):
看到这个信息内容是否需要马上行动?与严重性一起,表示看到信息内容后不作出任何行动的后果。
确定性(certainty):
这个信息内容的效果是否会导致某种痛苦或快乐?或者这种概率非常小?
信源(source):
信息内容来自那里?我是否信任发出信息的人?这是否曾被人吗所验证?
娱乐性(entertainment):
信息的内容是否好玩?是否耐读?
姑且如此吧,目前,还没有想到更多的维度。如果可以对一条内容的每个维度给予赋值,并且给出权重,那么
信息内容对人影响的价值评估Ve:
Ve = a0*Releavance+a1*Slinky +a2*Resonance+
a3*Severity+a4*imediacy+a5*Certaincy +
a6* source+ a7*Entertainment
且 a0+a1+a2+a3+a4+a5+a6+a7=1
这里主要指多人对信息的统计量,可以分为以下几个维度:
态度(Attitudes):
对改信息的点赞,拍砖之类的总数,是轻交互。
评论(Comments):
对该信息参与程度,还可以对评论的价值,评论的来源等参数进行细化,评论也是一条信息,相当于在一定上下文条件下的递归。
传播(Forwards):
例如转发的数量,覆盖的范围等等。
人对信息内容反馈的价值评估Vf:
Vf = b0*Attitudes + b1 * Comments + b2 * Forwards
信息容量(capacity):
这是信息内容自身的属性,指内容的大小
信息内容的表达形式(format)
内容的呈现形式,文字,语音,图片,视频拥有不同的权重。
信息内容自身属性的价值评估Vs:
Vs = c0 * Capacity + c1 * Format
同样使用线性模型,那么信息内容的价值
Vm = m1*Ve + m2*Vf +m3*Vs
对不同的社交网络,信息的某些维度可能难于计算,而且涉及到时序分析,但是自己总算有了一个信息内容评估的标准,尽管粗糙,但是在一定程度上可以实现对内容价值的感知。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。