小编给大家分享一下Flink中Transform怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt"; StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); TupleTypeInfo<Tuple3<String, Double, Long>> typeInfo = new TupleTypeInfo<>(Types.STRING, Types.DOUBLE, Types.LONG); TupleCsvInputFormat<Tuple3<String, Double, Long>> tupleCsvInputFormat = new TupleCsvInputFormat<>(new Path(path), typeInfo); DataStreamSource<Tuple3<String, Double, Long>> dataStreamSource = env.createInput(tupleCsvInputFormat, typeInfo); //或 DataStreamSource<Tuple2<String, Double>> dataStreamSource = env.readFile(tupleCsvInputFormat, path); SingleOutputStreamOperator<Tuple3<String, Double, Long>> operator = dataStreamSource .filter(Objects::nonNull) // .map() // .flatMap() // .keyBy(0) .keyBy(tuple -> tuple.f0) .minBy(1); // .min() // .max(1); // .maxBy(1, false); // .sum(1); // .reduce(); // .process(); operator.print().setParallelism(1); env.execute();
String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt"; StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); PojoTypeInfo<TelemeterDTO> typeInfo = (PojoTypeInfo<TelemeterDTO>) Types.POJO(TelemeterDTO.class); PojoCsvInputFormat<TelemeterDTO> inputFormat = new PojoCsvInputFormat<>(new Path(path), typeInfo, new String[]{"code", "value", "timestamp"}); DataStreamSource<TelemeterDTO> dataStreamSource = env.createInput(inputFormat, typeInfo); //分流 SplitStream<TelemeterDTO> splitStream = dataStreamSource .split(item -> { if (item.getValue() > 100) { return Collections.singletonList("high"); } return Collections.singletonList("low"); }); DataStream<TelemeterDTO> highStream = splitStream.select("high"); DataStream<TelemeterDTO> lowStream = splitStream.select("low"); //合流 ConnectedStreams<TelemeterDTO, TelemeterDTO> connectedStreams = lowStream.connect(highStream); // DataStream<TelemeterDTO> unionDataStream = lowStream.union(highStream); //需要类型一致 SingleOutputStreamOperator<Tuple3<String, Double, Long>> operator = connectedStreams .map(new CoMapFunction<TelemeterDTO, TelemeterDTO, Tuple3<String, Double, Long>>() { @Override public Tuple3<String, Double, Long> map1(TelemeterDTO value) { return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp()); } @Override public Tuple3<String, Double, Long> map2(TelemeterDTO value) { return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp()); } }); operator.print(); env.execute();
MapFunction
FilterFunction
ReduceFunction
ProcessFunction
SourceFunction
SinkFunction
富函数 包含了生命周期,及上下文相关信息,如
open() 可以在算子创建之初建立数据库连接
close() 在在算子生命结束之前关闭资源
以上是“Flink中Transform怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。