温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么分析yarn的调度模式

发布时间:2022-01-14 15:52:11 来源:亿速云 阅读:138 作者:柒染 栏目:云计算

这篇文章跟大家分析一下“怎么分析yarn的调度模式”。内容详细易懂,对“怎么分析yarn的调度模式”感兴趣的朋友可以跟着小编的思路慢慢深入来阅读一下,希望阅读后能够对大家有所帮助。下面跟着小编一起深入学习“怎么分析yarn的调度模式”的知识吧。

Hadoop  YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),小编将介绍YARN是如何对这些资源进行调度和隔离的。yarn对于自己运行时作业的资源分配模式有Capacity Scheduler和Fair Scheduler两种。

在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责 资源的分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所 谓的“资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的 资源隔离。

基于以上考虑,YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会被若干个服务共享,比如一部分给YARN,一部分给HDFS,一部分给HBase等,YARN配置的只是自己可以使用的,配置参数如下:

(1)yarn.nodemanager.resource.memory-mb

表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。

(2)yarn.nodemanager.vmem-pmem-ratio

任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。

(3) yarn.nodemanager.pmem-check-enabled

是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(4) yarn.nodemanager.vmem-check-enabled

是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(5)yarn.scheduler.minimum-allocation-mb

单个任务可申请的最少物理内存量,默认是1024(MB),如果一个任务申请的物理内存量少于该值,则该对应的值改为这个数。

(6)yarn.scheduler.maximum-allocation-mb

单个任务可申请的最多物理内存量,默认是8192(MB)。

默认情况下,YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性 (即任务任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而Java进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用 线程监控的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制。

Capacity Scheduler

Capacity Scheduler支持以下特性:

(1) 计算能力保证。支持多个队列,某个作业可被提交到某一个队列中。每个队列会配置一定比例的计算资源,且所有提交到队列中的作业共享该队列中的资源。

(2) 灵活性。空闲资源会被分配给那些未达到资源使用上限的队列,当某个未达到资源的队列需要资源时,一旦出现空闲资源资源,便会分配给他们。

(3) 支持优先级。队列支持作业优先级调度(默认是FIFO)

(4) 多重租赁。综合考虑多种约束防止单个作业、用户或者队列独占队列或者集群中的资源。

(5) 基于资源的调度。 支持资源密集型作业,允许作业使用的资源量高于默认值,进而可容纳不同资源需求的作业。不过,当前仅支持内存资源的调度。


想要配置能力调度模式首先我们需要将yarn-site.xml文件中设置yarn.resourcemanager.scheduler.class属性为org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.CapacityScheduler

1.  资源分配相关参数

(1)  capacity:队列的资源容量(百分比)。 当系统非常繁忙时,应保证每个队列的容量得到满足,而如果每个队列应用程序较少,可将剩余资源共享给其他队列。注意,所有队列的容量之和应小于100。

(2)  maximum-capacity:队列的资源使用上限(百分比)。由于存在资源共享,因此一个队列使用的资源量可能超过其容量,而最多使用资源量可通过该参数限制。

minimum-user-limit-percent:每个用户最低资源保障(百分比)。任何时刻,一个队列中每个用户可使用的资源量均有一定的限制。当一个队列中同时运行多个用户的应用程序时中,每个用户的使用资源量在一个最小值和最大值之间浮动,其中,最小值取决于正在运行的应用程序数目,而最大值则由minimum-user-limit-percent决定。比如,假设minimum-user-limit-percent为25。当两个用户向该队列提交应用程序时,每个用户可使用资源量不能超过50%,如果三个用户提交应用程序,则每个用户可使用资源量不能超多33%,如果四个或者更多用户提交应用程序,则每个用户可用资源量不能超过25%。

(3)  user-limit-factor:每个用户最多可使用的资源量(百分比)。比如,假设该值为30,则任何时刻,每个用户使用的资源量不能超过该队列容量的30%。

2.  限制应用程序数目相关参数

(1)  maximum-applications :集群或者队列中同时处于等待和运行状态的应用程序数目上限,这是一个强限制,一旦集群中应用程序数目超过该上限,后续提交的应用程序将被拒绝,默认值为 10000。所有队列的数目上限可通过参数yarn.scheduler.capacity.maximum-applications设置(可看做默认 值),而单个队列可通过参数yarn.scheduler.capacity.<queue-path>.maximum- applications设置适合自己的值。

(2)  maximum-am-resource-percent:集群中用于运行应用程序 ApplicationMaster的资源比例上限,该参数通常用于限制处于活动状态的应用程序数目。该参数类型为浮点型,默认是0.1,表示10%。所 有队列的ApplicationMaster资源比例上限可通过参数yarn.scheduler.capacity. maximum-am-resource-percent设置(可看做默认值),而单个队列可通过参数 yarn.scheduler.capacity.<queue-path>. maximum-am-resource-percent设置适合自己的值。

3.  队列访问和权限控制参数

(1)  state 队列状态可以为STOPPED或者 RUNNING,如果一个队列处于STOPPED状态,用户不可以将应用程序提交到该队列或者它的子队列中,类似的,如果ROOT队列处于STOPPED 状态,用户不可以向集群中提交应用程序,但正在运行的应用程序仍可以正常运行结束,以便队列可以优雅地退出。

(2)  acl_submit_applications:限定哪些Linux用户/用户组可向给定队列中提交应用程序。需要注意的是,该属性具有继承性,即如果一个用户可以向某个队列中提交应用程序,则它可以向它的所有子队列中提交应用程序。配置该属性时,用户之间或用户组之间用“,”分割,用户和用户组之间用空格分割,比如“user1, user2 group1,group2”。

(3)  acl_administer_queue:为队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等。同样,该属性具有继承性,如果一个用户可以向某个队列中提交应用程序,则它可以向它的所有子队列中提交应用程序。

Fair Scheduler

公平调度器按资源池(pool)来组织作业,并把资源公平的分到这些资源池里。默认情况下,每一个用户拥有一个独立的资源池,以使每个用户都能获得 一份等同的集群资源而不管他们提交了多少作业。按用户的 Unix 群组或作业配置(jobconf)属性来设置作业的资源池也是可以的。在每一个资源池内,会使用公平共享(fair sharing)的方法在运行作业之间共享容量(capacity)。用户也可以给予资源池相应的权重,以不按比例的方式共享集群。

除了提供公平共享方法外,公平调度器允许赋给资源池保证(guaranteed)最小共享资源,这个用在确保特定用户、群组或生产应用程序总能获取 到足够的资源时是很有用的。当一个资源池包含作业时,它至少能获取到它的最小共享资源,但是当资源池不完全需要它所拥有的保证共享资源时,额外的部分会在 其它资源池间进行切分。

要想配置公平调度模式首先我们需要将yarn-site.xml文件中设置yarn.resourcemanager.scheduler.class属性为org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler

Fair Scheduler允许用户将队列信息专门放到一个配置文件(默认是fair-scheduler.xml),对于每个队列,管理员可配置以下几个选项:

(1)  minResources :最少资源保证量,设置格式为“X mb, Y vcores”,当一个队列的最少资源保证量未满足时,它将优先于其他同级队列获得资源,对于不同的调度策略(后面会详细介绍),最少资源保证量的含义不 同,对于fair策略,则只考虑内存资源,即如果一个队列使用的内存资源超过了它的最少资源量,则认为它已得到了满足;对于drf策略,则考虑主资源使用 的资源量,即如果一个队列的主资源量超过它的最少资源量,则认为它已得到了满足。

(2)  maxResources最多可以使用的资源量,fair scheduler会保证每个队列使用的资源量不会超过该队列的最多可使用资源量。

(3)  maxRunningApps最多同时运行的应用程序数目。通过限制该数目,可防止超量Map Task同时运行时产生的中间输出结果撑爆磁盘。

(4)  minSharePreemptionTimeout最小共享量抢占时间。如果一个资源池在该时间内使用的资源量一直低于最小资源量,则开始抢占资源。

(5)  schedulingMode/schedulingPolicy:队列采用的调度模式,可以是fifo、fair或者drf。

(6)  aclSubmitApps可向队列中提交应用程序的Linux用户或用户组列表,默认情况下为“*”,表示任何用户均可以向该队列提交应用程序。需要注意的是,该属性具有继承性,即子队列的列表会继承父队列的列表。配置该属性时,用户之间或用户组之间用“,”分割,用户和用户组之间用空格分割,比如“user1, user2 group1,group2”。

(7)  aclAdministerApps:该队列的管理员列表。一个队列的管理员可管理该队列中的资源和应用程序,比如可杀死任意应用程序。

管理员也可为单个用户添加maxRunningJobs属性限制其最多同时运行的应用程序数目。此外,管理员也可通过以下参数设置以上属性的默认值:

(1)  userMaxJobsDefault:用户的maxRunningJobs属性的默认值。

(2) defaultMinSharePreemptionTimeout :队列的minSharePreemptionTimeout属性的默认值。

(3)  defaultPoolSchedulingMode:队列的schedulingMode属性的默认值。

(4)  fairSharePreemptionTimeout:公平共享量抢占时间。如果一个资源池在该时间内使用资源量一直低于公平共享量的一半,则开始抢占资源。

关于怎么分析yarn的调度模式就分享到这里啦,希望上述内容能够让大家有所提升。如果想要学习更多知识,请大家多多留意小编的更新。谢谢大家关注一下亿速云网站!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI