小编给大家分享一下结构化处理之Spark Session的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创建DataFrame,有三种模式,一种是sql()主要是访问Hive表;一种是从RDD生成DataFrame,主要从ExistingRDD开始创建;还有一种是read/format格式,从json/txt/csv等数据源格式创建。
先看看第三种方式的创建流程。
1、read/format
def read: DataFrameReader = new DataFrameReader(self)
SparkSession.read()方法直接创建DataFrameReader,然后再DataFrameReader的load()方法来导入外部数据源。load()方法主要逻辑如下:
def load(paths: String*): DataFrame = { sparkSession.baseRelationToDataFrame( DataSource.apply( sparkSession, paths = paths, userSpecifiedSchema = userSpecifiedSchema, className = source, options = extraOptions.toMap).resolveRelation()) }
创建对应数据源类型的DataSource,DataSource解析成BaseRelation,然后通过SparkSession的baseRelationToDataFrame方法从BaseRelation映射生成DataFrame。从BaseRelation创建LogicalRelation,然后调用Dataset.ofRows方法从LogicalRelation创建DataFrame。DataFrame实际就是Dataset。
type DataFrame = Dataset[Row]
baseRelationToDataFrame的定义:
def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame = { Dataset.ofRows(self, LogicalRelation(baseRelation)) }
Dataset.ofRows方法主要是将逻辑计划转换成物理计划,然后生成新的Dataset。
2、执行
SparkSession的执行关键是如何从LogicalPlan生成物理计划。我们试试跟踪这部分逻辑。
def count(): Long = withAction("count", groupBy().count().queryExecution) { plan =>
plan.executeCollect().head.getLong(0)
}
Dataset的count()动作触发物理计划的执行,调用物理计划plan的executeCollect方法,该方法实际上会调用doExecute()方法生成Array[InternalRow]格式。executeCollect方法在SparkPlan中定义。
3、HadoopFsRelation
需要跟踪下如何从HadoopFsRelation生成物理计划(也就是SparkPlan)
通过FileSourceStrategy来解析。它在FileSourceScanExec上叠加Filter和Projection等操作,看看FileSourceScanExec的定义:
case class FileSourceScanExec( @transient relation: HadoopFsRelation, output: Seq[Attribute], requiredSchema: StructType, partitionFilters: Seq[Expression], dataFilters: Seq[Expression], override val metastoreTableIdentifier: Option[TableIdentifier]) extends DataSourceScanExec with ColumnarBatchScan { 。。。 }
它的主要执行代码doExecute()的功能逻辑如下:
protected override def doExecute(): RDD[InternalRow] = { if (supportsBatch) { // in the case of fallback, this batched scan should never fail because of: // 1) only primitive types are supported // 2) the number of columns should be smaller than spark.sql.codegen.maxFields WholeStageCodegenExec(this).execute() } else { val unsafeRows = { val scan = inputRDD if (needsUnsafeRowConversion) { scan.mapPartitionsWithIndexInternal { (index, iter) => val proj = UnsafeProjection.create(schema) proj.initialize(index) iter.map(proj) } } else { scan } } val numOutputRows = longMetric("numOutputRows") unsafeRows.map { r => numOutputRows += 1 r } } }
inputRDD有两种方式创建,一是createBucketedReadRDD,二是createNonBucketedReadRDD。两者没有本质的区别,仅仅是文件分区规则的不同。
private lazy val inputRDD: RDD[InternalRow] = { val readFile: (PartitionedFile) => Iterator[InternalRow] = relation.fileFormat.buildReaderWithPartitionValues( sparkSession = relation.sparkSession, dataSchema = relation.dataSchema, partitionSchema = relation.partitionSchema, requiredSchema = requiredSchema, filters = pushedDownFilters, options = relation.options, hadoopConf = relation.sparkSession.sessionState.newHadoopConfWithOptions(relation.options)) relation.bucketSpec match { case Some(bucketing) if relation.sparkSession.sessionState.conf.bucketingEnabled => createBucketedReadRDD(bucketing, readFile, selectedPartitions, relation) case _ => createNonBucketedReadRDD(readFile, selectedPartitions, relation) } } createNonBucketedReadRDD调用FileScanRDD : new FileScanRDD(fsRelation.sparkSession, readFile, partitions)
以上是“结构化处理之Spark Session的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。