这篇文章主要为大家展示了“windows10下如何将cuda9.2升级到cuda10.2”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“windows10下如何将cuda9.2升级到cuda10.2”这篇文章吧。
一、文章主要内容
1、Windows10下从cuda9.2升级到cuda10.2
2、Windows10下cudnn安装
3、cuda9.2、cuda10.2、cudnn7.2.1、cudnn7.6.5在DeepLearning4j中性能对比
二、安装过程
1、机器环境说明:
CPU:i7 8700 6核12线程
GPU:GTX 1070Ti
内存:16G
备注:机器中曾经安装过cuda和cudnn,版本为:cuda9.2.148、cudnn7.2.1
2、安装包准备
(1)、cuda下载
cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archive,这里下载版本为:10.2,由于dl4j最高只支持到10.2
安装机器为windows10 64位,选择cuda win10的64位版本,安装模式选择local,把安装包下载到本地安装
(2)、cuDNN下载
下载地址:https://developer.nvidia.com/rdp/cudnn-archive,这里选择与cuda10.2匹配的最新cudnn版本:7.6.5,这里不选8.0.2的原因是dl4j-beta6不支持8.x版本。
下载到的安装包如下:
3、安装cuda10.2
直接按照默认安装路径,下一步,同意并继续 -> 精简安装
进入安装阶段
安装结束之后,在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA目录之下,出现了v10.2的文件夹,如下图:
备注:这里有个v9.2,是之前安装的cuda版本,设置环境变量,也可以切换到9.2的版本
打开cmd控制台,输入nvcc --version命令回车,如下图所示,说明10.2版本安装成功
同时用dl4j最新的example测试,验证cuad10.2是否可用,example地址:https://github.com/eclipse/deeplearning4j-examples/tree/master/mvn-project-template
将maven依赖修改成如下配置,其中将dl4j-master.version修改为:1.0.0-beta6,加入nd4j-cuda-10.2-platform和deeplearning4j-cuda-10.2依赖
<properties> <dl4j-master.version>1.0.0-beta6</dl4j-master.version> <logback.version>1.2.3</logback.version> <java.version>1.8</java.version> <maven-shade-plugin.version>2.4.3</maven-shade-plugin.version> </properties> <dependencies> <!-- deeplearning4j-core: contains main functionality and neural networks --> <dependency> <groupId>org.deeplearning4j</groupId> <artifactId>deeplearning4j-core</artifactId> <version>${dl4j-master.version}</version> </dependency> <!-- ND4J backend: every project needs one of these. The backend defines the hardware on which network training will occur. "nd4j-native-platform" is for CPUs only (for running on all operating systems). --> <!-- <dependency> <groupId>org.nd4j</groupId> <artifactId>nd4j-native</artifactId> <version>${dl4j-master.version}</version> </dependency> --> <!-- CUDA: to use GPU for training (CUDA) instead of CPU, uncomment this, and remove nd4j-native-platform --> <!-- Requires CUDA to be installed to use. Change the version (8.0, 9.0, 9.1) to change the CUDA version --> <dependency> <groupId>org.nd4j</groupId> <artifactId>nd4j-cuda-10.2-platform</artifactId> <version>${dl4j-master.version}</version> </dependency> <!-- Optional, but recommended: if you use CUDA, also use CuDNN. To use this, CuDNN must also be installed --> <!-- See: https://deeplearning4j.konduit.ai/config/backends/config-cudnn#using-deeplearning-4-j-with-cudnn --> <dependency> <groupId>org.deeplearning4j</groupId> <artifactId>deeplearning4j-cuda-10.2</artifactId> <version>${dl4j-master.version}</version> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>${logback.version}</version> </dependency> </dependencies>
Run as 一下main方法,打印日志如下, ND4J CUDA build version: 10.2.89,说明cuda10.2已经生效。
o.d.e.s.LeNetMNIST - Load data.... o.d.e.s.LeNetMNIST - Build model.... o.n.l.f.Nd4jBackend - Loaded [JCublasBackend] backend o.n.n.NativeOpsHolder - Number of threads used for linear algebra: 32 o.n.n.Nd4jBlas - Number of threads used for OpenMP BLAS: 0 o.n.l.a.o.e.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] o.n.l.a.o.e.DefaultOpExecutioner - Cores: [12]; Memory: [3.5GB]; o.n.l.a.o.e.DefaultOpExecutioner - Blas vendor: [CUBLAS] o.n.l.j.JCublasBackend - ND4J CUDA build version: 10.2.89 o.n.l.j.JCublasBackend - CUDA device 0: [GeForce GTX 1070 Ti]; cc: [6.1]; Total memory: [8589934592] o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork with WorkspaceModes set to [training: ENABLED; inference: ENABLED], cacheMode set to [NONE] o.d.n.l.c.ConvolutionLayer - Could not initialize CudnnConvolutionHelper java.lang.reflect.InvocationTargetException: null at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.deeplearning4j.nn.layers.convolution.ConvolutionLayer.initializeHelper(ConvolutionLayer.java:78) Caused by: java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867) at java.lang.Runtime.loadLibrary0(Runtime.java:870) at java.lang.System.loadLibrary(System.java:1122) at org.bytedeco.javacpp.Loader.loadLibrary(Loader.java:1543) at org.bytedeco.javacpp.Loader.load(Loader.java:1192)
上面的日志中,出现一个异常,cudnn无法被初始化,是因为cudnn还没有安装,接下来就可以安装cudnn了。
4、cuDNN安装
解压 cudnn-10.2-windows10-x64-v7.6.5.32.zip,出现下图所示的三个文件夹
将这三个文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2目录下即可。cudnn的文件便加入到了cuda安装目录下
再次运行测试程序,异常消失,且CudnnSubsamplingHelper和CudnnConvolutionHelper初始化成功
o.d.e.s.LeNetMNIST - Load data.... o.d.e.s.LeNetMNIST - Build model.... o.n.l.f.Nd4jBackend - Loaded [JCublasBackend] backend o.n.n.NativeOpsHolder - Number of threads used for linear algebra: 32 o.n.n.Nd4jBlas - Number of threads used for OpenMP BLAS: 0 o.n.l.a.o.e.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] o.n.l.a.o.e.DefaultOpExecutioner - Cores: [12]; Memory: [3.5GB]; o.n.l.a.o.e.DefaultOpExecutioner - Blas vendor: [CUBLAS] o.n.l.j.JCublasBackend - ND4J CUDA build version: 10.2.89 o.n.l.j.JCublasBackend - CUDA device 0: [GeForce GTX 1070 Ti]; cc: [6.1]; Total memory: [8589934592] o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork with WorkspaceModes set to [training: ENABLED; inference: ENABLED], cacheMode set to [NONE] o.d.n.l.c.ConvolutionLayer - CudnnConvolutionHelper successfully initialized o.n.j.h.i.CudaZeroHandler - Creating bucketID: 5 o.d.n.l.c.s.SubsamplingLayer - CudnnSubsamplingHelper successfully initialized o.d.n.l.c.ConvolutionLayer - CudnnConvolutionHelper successfully initialized o.d.n.l.c.s.SubsamplingLayer - CudnnSubsamplingHelper successfully initialized
至此,cuda10.2和cudnn7.6.5安装成功,且可以dl4j beta6可以正常运行。
三、性能对比
测试程序地址:https://github.com/eclipse/deeplearning4j-examples/tree/master/mvn-project-template,网络结构为LeNet
环境说明:
操作系统:Windows10
CPU:i7 8700 3.2GHz 6核12线程
GPU:GTX 1070Ti
内存:16G
dl4j:beta6
对比结果:
运行环境 | 耗时(ms) |
CPU | 26566 |
cuda9.2 | 20725 |
cuda9.2+cudnn7.2.1 | 12575 |
cuda10.2 | 19953 |
cuda10.2+cudnn7.6.5 | 12574 |
结果说明:
1、cuda9.2和cuda10.2运行结果相差不大
2、cuda9.2+cudnn7.2.1 和 cuda10.2+cudnn7.6.5运行结果也相差不大
3、cudnn运行效率有显著提升
4、GPU配合cudnn比CPU效率提升2倍
特殊说明:dl4j基于cudnn对如下结构进行了优化,如下图所示:
以上是“windows10下如何将cuda9.2升级到cuda10.2”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。