如何PointPillars点云检测网络的分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
PointPillars是在VoxelNet和SECOND的基础上进行改进,得到的点云目标检测网络。该网络目前在KITTI上3D汽车检测项目中排名第18。只用了点云数据,运行时间为16 ms,实时性很好,已被CVPR2019收录,是一个非常有前景,值得关注的成果。
为了很好的理解PointPillars,我们需要对VoxelNet和SECOND进行简单介绍。
一、VoxelNet
VoxelNet发布于2017年,不同于MV3D和AVOD将点云投影成鸟瞰图的处理方式,VoxelNet将点云表达成Voxel(体素)形式,这是一种规则化的三维空间结构,
然后用简化版的pointnet(即VFE)网络对每个Voxel中的点云进行特征提取,这样就在三维Voxel结构上增加了特征信息,所以每个点云文件都成为一个四维张量的“特征图”。这种特征图是没办法用常规的图片领域的(长、宽、通道)三维卷积核进行处理的,所以作者使用的是四维的卷积核(长、宽、高、通道)来进行处理,并构造了RPN网络用来做目标检测。
稀疏卷积层的引入,大大提高了运算速度。目前官方代码已经开源。SECONDv1.5在KITTI榜单取得了不错的效果。值得一提的是,PointPillars目前发布出来的代码也是在SECOND代码的基础上进行改进得到的。因此SECOND的代码很值得读者研究。https://github.com/traveller59/second.pytorch
三、PointPillars
到了pointpillars,相信不少读者会和我产生一样的想法,这个网络其实就是对SECOND做了简化,直接把点云表示成一个一个的“Pillar(柱子)”。
然后用VFE分别提特征,这样直接得到的就是鸟瞰图,也就是作者文中所提的“伪图像”。中间省略了SECOND中的稀疏卷积操作。
看完上述内容,你们掌握如何PointPillars点云检测网络的分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。