本篇内容主要讲解“python中的卡方检验是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python中的卡方检验是什么”吧!
说明
1、统计样本的实际观测值与理论推断值之间的偏差程度,实际观测值与理论推断值之间的偏差程度决定了卡方值的大小。卡方值越大,两者的偏差程度越大;相反,两者的偏差越小;如果两个值完全相等,卡方值为0。
2、一般适用于自变量X为离散类型,由于变量Y为离散类别值,数据一般呈正态分布。
实例
从一所中学随机抽取两个班,调查他们对晚上自习的态度。甲班41人赞成,25人反对;乙班34人赞成,29人反对。这两个班对晚上自习的态度是否有显著差异。
from scipy.stats import chi2_contingency import numpy as np data = np.array([[41,25], [34,29]]) kt= chi2_contingency(data) print('卡方值=%.4f, p值=%.4f, 自由度=%i expected_frep=%s'%kt)
到此,相信大家对“python中的卡方检验是什么”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。