本篇内容主要讲解“如何使用c++实现OpenCV图像横向和纵向拼接”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何使用c++实现OpenCV图像横向和纵向拼接”吧!
// 图像拼接 cv::Mat ImageSplicing(vector<cv::Mat> images,int type) { if (type != 0 && type != 1) type = 0; int num = images.size(); int newrow = 0; int newcol = 0; cv::Mat result; // 横向拼接 if (type == 0) { int minrow = 10000; for (int i = 0; i < num; ++i) { if (minrow > images[i].rows) minrow = images[i].rows; } newrow = minrow; for (int i = 0; i < num; ++i) { int tcol = images[i].cols*minrow / images[i].rows; int trow = newrow; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newcol += images[i].cols; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangerow = cv::Range((newrow - images[i].rows) / 2, (newrow - images[i].rows) / 2 + images[i].rows); rangecol = cv::Range(start, start + images[i].cols); images[i].copyTo(result(rangerow, rangecol)); start += images[i].cols; } } // 纵向拼接 else if (type == 1) { int mincol = 10000; for (int i = 0; i < num; ++i) { if (mincol > images[i].cols) mincol = images[i].cols; } newcol = mincol; for (int i = 0; i < num; ++i) { int trow = images[i].rows*mincol / images[i].cols; int tcol = newcol; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newrow += images[i].rows; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangecol= cv::Range((newcol - images[i].cols) / 2, (newcol - images[i].cols) / 2 + images[i].cols); rangerow = cv::Range(start, start + images[i].rows); images[i].copyTo(result(rangerow, rangecol)); start += images[i].rows; } } return result; }
#include <iostream> #include <opencv2/opencv.hpp> #include <vector> using namespace std; using namespace cv; cv::Mat ImageSplicing(vector<cv::Mat> images, int type); int main() { cv::Mat src1 = imread("1.jpg"); cv::Mat src2 = imread("2.jpg"); cv::Mat src3 = imread("3.jpg"); cv::Mat src4 = imread("4.jpg"); vector<cv::Mat> images; images.push_back(src1); images.push_back(src2); images.push_back(src3); images.push_back(src4); // 0为横向 cv::Mat result1 = ImageSplicing(images, 0); // 1为纵向 cv::Mat result2 = ImageSplicing(images, 1); imwrite("result1.jpg",result1); imwrite("result2.jpg",result2); return 0; } // 图像拼接 cv::Mat ImageSplicing(vector<cv::Mat> images,int type) { if (type != 0 && type != 1) type = 0; int num = images.size(); int newrow = 0; int newcol = 0; cv::Mat result; // 横向拼接 if (type == 0) { int minrow = 10000; for (int i = 0; i < num; ++i) { if (minrow > images[i].rows) minrow = images[i].rows; } newrow = minrow; for (int i = 0; i < num; ++i) { int tcol = images[i].cols*minrow / images[i].rows; int trow = newrow; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newcol += images[i].cols; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangerow = cv::Range((newrow - images[i].rows) / 2, (newrow - images[i].rows) / 2 + images[i].rows); rangecol = cv::Range(start, start + images[i].cols); images[i].copyTo(result(rangerow, rangecol)); start += images[i].cols; } } // 纵向拼接 else if (type == 1) { int mincol = 10000; for (int i = 0; i < num; ++i) { if (mincol > images[i].cols) mincol = images[i].cols; } newcol = mincol; for (int i = 0; i < num; ++i) { int trow = images[i].rows*mincol / images[i].cols; int tcol = newcol; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newrow += images[i].rows; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangecol= cv::Range((newcol - images[i].cols) / 2, (newcol - images[i].cols) / 2 + images[i].cols); rangerow = cv::Range(start, start + images[i].rows); images[i].copyTo(result(rangerow, rangecol)); start += images[i].rows; } } return result; }
图1 横向拼接
图2 纵向拼接
到此,相信大家对“如何使用c++实现OpenCV图像横向和纵向拼接”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。