这篇文章主要为大家展示了“Python图像处理之透视变换的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python图像处理之透视变换的示例分析”这篇文章吧。
如果你想对图像进行校准,那么透视变换是非常有效的变换手段。透视变换的定义为将图像投影到一个新的视平面,通常也被称之为投影映射。
一般来说,通用的图像变换公式如下所示:
上述公式中,u,v代表原始图像坐标,x,y为经过透视变换的图片坐标,其中变换矩阵为3X3形式。进而可以得到:
在介绍opencv的透视变换函数之前,我们举例来讲解该算法的原理:
直观的来看,透视变换的作用就是将左侧图像的坐标点
[[50,0],[150,0],[0,200],[200,200]]
转化为新的坐标
[[0,0],[200,0],[0,200],[200,200]]
通过计算我们知道,转换矩阵如下:
我们来验证一下,采用左上角的点(50,0)带入公式,如下:
接着我们将列向量的前两维度除以第三维执行归一化:
所以我们知道原图左上角点执行透视变换后的映射关系:
本文以扑克牌的例子来进行讲解,样例结果如下:
首先我们来读入一副彩色图像,如下:
import cv2 import numpy as np img = cv2.imread("image/sample.jpg") h, w, c = img.shape # h=240 w=320
接着我们需要挑选四个点,我们这里采用左上,左下,右下和右上,下面的代码把我们挑选的四个点画到图像上
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)] for i, pt in enumerate(src_list): cv2.circle(img, pt, 5, (0, 0, 255), -1) cv2.putText(img,str(i+1),(pt[0]+5,pt[1]+10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) pts1 = np.float32(src_list)
结果如下:
首先选择四个目的图像上的点,然后调用openv函数进行透视变换,代码如下:
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]]) matrix = cv2.getPerspectiveTransform(pts1, pts2) result = cv2.warpPerspective(img, matrix, (h, w)) cv2.imshow("Image", img) cv2.imshow("Perspective transformation", result) cv2.waitKey(0)
得到结果如下:
我们在实际应用中,可以使用透视变换来替换广告牌中对应的背景图,结果如下:
广告牌:
Logo图:
结果图:
以上是“Python图像处理之透视变换的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。