这篇文章主要介绍python爬虫Scrapy框架的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
避免重新下载最近下载的媒体
指定存储位置(文件系统目录,Amazon S3 bucket,谷歌云存储bucket)
将所有下载的图片转换为通用格式(JPG)和模式(RGB)
生成缩略图
检查图像的宽度/高度,进行最小尺寸过滤
ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 120} 启用 FILES_STORE = '/path/to/valid/dir' 文件管道存放位置 IMAGES_STORE = '/path/to/valid/dir' 图片管道存放位置 FILES_URLS_FIELD = 'field_name_for_your_files_urls' 自定义文件url字段 FILES_RESULT_FIELD = 'field_name_for_your_processed_files' 自定义结果字段 IMAGES_URLS_FIELD = 'field_name_for_your_images_urls' 自定义图片url字段 IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images' 结果字段 FILES_EXPIRES = 90 文件过期时间 默认90天 IMAGES_EXPIRES = 90 图片过期时间 默认90天 IMAGES_THUMBS = {'small': (50, 50), 'big':(270, 270)} 缩略图尺寸 IMAGES_MIN_HEIGHT = 110 过滤最小高度 IMAGES_MIN_WIDTH = 110 过滤最小宽度 MEDIA_ALLOW_REDIRECTS = True 是否重定向
#解析settings里的配置字段 def __init__(self, store_uri, download_func=None, settings=None) #图片下载 def image_downloaded(self, response, request, info) #图片获取 图片大小的过滤 #缩略图的生成 def get_images(self, response, request, info) #转化图片格式 def convert_image(self, image, size=None) #生成媒体请求 可重写 def get_media_requests(self, item, info) return [Request(x) for x in item.get(self.images_urls_field, [])] #得到图片url 变成请求 发给引擎 #此方法获取文件名 进行改写 def item_completed(self, results, item, info) #文件路径 def file_path(self, request, response=None, info=None) #缩略图的存储路径 def thumb_path(self, request, thumb_id, response=None, info=None):
(当然不使用图片管道的话也是可以爬取百度图片的,但这还需要我们去分析网页的代码,还是有点麻烦,使用图片管道就可以省去这个步骤了)
注意:由于需要添加所有的请求头,所以我们要重写start_requests函数
import re import scrapy from ..items import DbimgItem class DbSpider(scrapy.Spider): name = 'db' # allowed_domains = ['xxx.com'] start_urls = ['https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1'] def start_requests(self): #因为需要添加所有的请求头,所以我们要重写start_requests函数 # url = 'https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1' headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "max-age=0", "Connection": "keep-alive", "Cookie": "BIDUPSID=4B61D634D704A324E3C7E274BF11F280; PSTM=1624157516; BAIDUID=4B61D634D704A324C7EA5BA47BA5886E:FG=1; __yjs_duid=1_f7116f04cddf75093b9236654a2d70931624173362209; BAIDUID_BFESS=101022AEE931E08A9B9A3BA623709CFE:FG=1; BDORZ=B490B5EBF6F3CD402E515D22BCDA1598; BDRCVFR[dG2JNJb_ajR]=mk3SLVN4HKm; cleanHistoryStatus=0; H_PS_PSSID=34099_33969_34222_31660_34226_33848_34113_34073_33607_34107_34134_34118_26350_22159; delPer=0; PSINO=6; BA_HECTOR=24ak842ka421210koq1gdtj070r; BDRCVFR[X_XKQks0S63]=mk3SLVN4HKm; userFrom=www.baidu.com; firstShowTip=1; indexPageSugList=%5B%22%E7%8B%97%22%2C%22%E7%8C%AB%E5%92%AA%22%2C%22%E5%B0%8F%E9%80%8F%E6%98%8E%22%5D; ab_sr=1.0.1_OGYwMTZiMjg5ZTNiYmUxODIxOTgyYTllZGMyMzhjODE2ZWE5OGY4YmEyZWVjOGZhOWIxM2NlM2FhZTQxMmFjODY0OWZiNzQxMjVlMWIyODVlZWFiZjY2NTQyMTZhY2NjNTM5NDNmYTFmZjgxMTlkOGYxYTUzYTIzMzA0NDE3MGNmZDhkYTBkZmJiMmJhZmFkZDNmZTM1ZmI2MWZkNzYyYQ==", "Host": "image.baidu.com", "Referer": "https://image.baidu.com/", "sec-ch-ua": '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"', "sec-ch-ua-mobile": "?0", "Sec-Fetch-Dest": "document", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-User": "?1", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36" } for url in self.start_urls: yield scrapy.Request(url,headers=headers,callback=self.parse,dont_filter=True) def parse(self, response): img_urls = re.findall('"thumbURL":"(.*?)"', response.text) # print(img_urls) item = DbimgItem() item['image_urls'] = img_urls yield item
import scrapy class DbimgItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() image_urls = scrapy.Field()
ROBOTSTXT_OBEY = False #打开我们写的管道 ITEM_PIPELINES = { # 'dbimg.pipelines.DbimgPipeline': 300, 'dbimg.pipelines.ImgPipe': 300, } #图片存放位置 IMAGES_STORE = 'D:/python test/爬虫/scrapy6/dbimg/imgs'
import os from itemadapter import ItemAdapter from scrapy.pipelines.images import ImagesPipeline import settings """ def item_completed(self, results, item, info): with suppress(KeyError): ItemAdapter(item)[self.images_result_field] = [x for ok, x in results if ok] return item """ class ImgPipe(ImagesPipeline): num=0 #重写此函数修改获取的图片的名字 不然图片名称就是一串数字字母 def item_completed(self, results, item, info): images_path = [x['path'] for ok, x in results if ok] #print('results: ',results) 先查看下results的数据格式,然后才能获取到我们需要的值 for image_path in images_path: os.rename(settings.IMAGES_STORE + "/" + image_path, settings.IMAGES_STORE + "/" + str(self.num) + ".jpg") self.num += 1
结果:
以上是“python爬虫Scrapy框架的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。