Spark 是一个基于内存式的分布式计算框架。具有高性能,高效可扩展,容错等优点。
今天讲解一下spark的流计算,其实它也不完全是实时的流计算,算是一种准实时的流计算。
上图讲解
运行环境:需要linux环境下的spark环境
本例用的centOS 6.5x64 因为需要使用TCP协议传输数据,所以需要安装一个nc插件。
安装方式: yum install ncxxx 或者挂载光盘安装
安装后启动nc -lk 9999 端口可以随便指定,最好是1024以上的就可以。
下面贴出代码
java版本的
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import com.google.common.base.Optional;
import scala.Tuple2;
public class SparkDemo {
public static void main(String[] args) {
SparkConf conf=new SparkConf().setAppName("sparkDemo2").setMaster("local[3]");
JavaStreamingContext jsc=new JavaStreamingContext(conf,Durations.seconds(5));
//使用带状态的算子,需要checkpoint做容错处理
jsc.checkpoint("D://chkspark");
JavaReceiverInputDStream<String> socketTextStream=jsc.socketTextStream("10.115.27.234", 1000);
JavaDStream<String> wordsDstream=socketTextStream.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID=1L;
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
});
JavaPairDStream<String, Integer> wordsToPairDstream=wordsDstream.mapToPair(new PairFunction<String, String,Integer>() {
private static final long SerialVersionUID=1L;
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
/**
* 一个batch对应一个RDD。
* */
JavaPairDStream<String, Integer> resultDstream=wordsToPairDstream.updateStateByKey(new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
private static final long serialVersionUID=1L;
public Optional<Integer> call(List<Integer> values, Optional<Integer> state) throws Exception {
Integer oldValue=0; //默认旧value是0
if (state.isPresent()) {
oldValue=state.get();
}
for (Integer value:values) {
oldValue+=value;
}
return Optional.of(oldValue);
}
});
//打印结果
resultDstream.print();
jsc.start();
jsc.awaitTermination();
}
}
程序测试: 从linux端的nc 下输入任意字符串,spark streaming会实时对输入的数据做出统计。类似于wordcount. 除非手动kill这个进程,否则会一直运行下去。因为它的原理就是和自来水的水流一样,是一连串的数据流。
运行结果展示:
也可以用scala写出同样的程序,代码量更少。
需要深入理解spark streaming的架构原理。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。