温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python深度学习神经网络基本原理的示例分析

发布时间:2022-03-04 14:55:14 来源:亿速云 阅读:141 作者:小新 栏目:开发技术

这篇文章主要介绍了Python深度学习神经网络基本原理的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

神经网络

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

梯度下降法

在详细了解梯度下降的算法之前,我们先看看相关的一些概念。

    1. 步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用上面下山的例子,步长就是在当前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度。

    2.特征(feature):指的是样本中输入部分,比如2个单特征的样本(x(0),y(0)),(x(1),y(1))(x(0),y(0)),(x(1),y(1)),则第一个样本特征为x(0)x(0),第一个样本输出为y(0)y(0)。

    3. 假设函数(hypothesis function):在监督学习中,为了拟合输入样本,而使用的假设函数,记为hθ(x)hθ(x)。比如对于单个特征的m个样本(x(i),y(i))(i=1,2,...m)(x(i),y(i))(i=1,2,...m),可以采用拟合函数如下: hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x。

    4. 损失函数(loss function):为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数。在线性回归中,损失函数通常为样本输出和假设函数的差取平方。比如对于m个样本(xi,yi)(i=1,2,...m)(xi,yi)(i=1,2,...m),采用线性回归,损失函数为:

J(θ0,θ1)=∑i=1m(hθ(xi)−yi)2J(θ0,θ1)=∑i=1m(hθ(xi)−yi)2

其中xixi表示第i个样本特征,yiyi表示第i个样本对应的输出,hθ(xi)hθ(xi)为假设函数。

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

Python深度学习神经网络基本原理的示例分析

感谢你能够认真阅读完这篇文章,希望小编分享的“Python深度学习神经网络基本原理的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI