温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python中逻辑回归随机梯度下降法怎么用

发布时间:2021-11-15 09:14:43 来源:亿速云 阅读:151 作者:小新 栏目:开发技术

这篇文章主要为大家展示了“python中逻辑回归随机梯度下降法怎么用”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“python中逻辑回归随机梯度下降法怎么用”这篇文章吧。

随机梯度下降法

随机梯度下降法(Stochastic Gradient Decent,
SGD)是对全批量梯度下降法计算效率的改进算法。本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;SGD的优势是更快地计算梯度。

代码

'''
随机梯度下降法(Stochastic Gradient Decent, SGD)
是对全批量梯度下降法计算效率的改进算法。本
质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;
SGD的优势是更快地计算梯度。
'''
import pandas as pd
import numpy as np
import os
os.getcwd()
# F:\\pythonProject3\\data\\data\\train.csv
# dataset_path = '..'
# 这是一个全批量梯度下降(full-batch gradient descent)的应用。
# 这个问题是一个回归问题
# 我们给出美国某大型问答社区从2010年10月1日到2016年11月30日,
# 每天新增的问题的个数和回答的个数。
# 任务是预测2016年12月1日到2017年5月1日,该问答网站每天新增的问题数和回答数。
train = pd.read_csv('..\\train.csv')
# 导入数据
# train = pd.read_csv('train.csv')
test = pd.read_csv('..\\test.csv')
submit = pd.read_csv('..\\sample_submit.csv')
path2=os.path.abspath('.')
print("path2@@@@@",path2)
path3=os.path.abspath('..')
print("path3@@@@@",path3)
print(train)
# 初始设置
beta = [1,1] #初始点
alpha = 0.2 #学习率,也就是步长
tol_L = 0.1 #阈值,也就是精度
# 对x进行归一化,train 是训练数据的二维表格
max_x = max(train['id']) #max_x是总共的id数
x = train['id'] / max_x #所有的id都除于max_x
y = train['questions'] # train二维表格中的questions列赋给y
type(train['id'])
print("train['id']#######\n",train['id'])
print("type(train['id'])###\n\n",x)
print("max_x#######",max_x)
#为了计算方向
def compute_grad_SGD(beta, x, y):
    '''
    :param beta: 是初始点
    :param x: 是自变量
    :param y: 是真是值
    :return: 梯度数组
    '''
    grad = [0, 0]
    r = np.random.randint(0, len(x)) #在0-len(x)之间随机生成一个数
    grad[0] = 2. * np.mean(beta[0] + beta[1] * x[r] - y[r]) #求beta[1,1],中第1个数的梯度
    grad[1] = 2. * np.mean(x * (beta[0] + beta[1] * x - y))#求beta[1,1],中第2个数的梯度
    return np.array(grad)
#为了计算下一个点在哪,
def update_beta(beta, alpha, grad):
    '''
    :param beta: 第一点,初始点
    :param alpha: 学习率,也就时步长
    :param grad: 梯度
    :return:
    '''
    new_beta = np.array(beta) - alpha * grad
    return new_beta
# 定义计算RMSE的函数
# 均方根误差(RMSE)
def rmse(beta, x, y):
    squared_err = (beta[0] + beta[1] * x - y) ** 2 # beta[0] + beta[1] * x是预测值,y是真实值,
    res = np.sqrt(np.mean(squared_err))
    return res
# 进行第一次计算
grad = compute_grad_SGD(beta, x, y) #调用计算梯度函数,计算梯度
loss = rmse(beta, x, y) #调用损失函数,计算损失
beta = update_beta(beta, alpha, grad) #更新下一点
loss_new = rmse(beta, x, y) #调用损失函数,计算下一个损失
# 开始迭代
i = 1
while np.abs(loss_new - loss) > tol_L:
    beta = update_beta(beta, alpha, grad)
    grad = compute_grad_SGD(beta, x, y)
    if i % 100 == 0:
        loss = loss_new
        loss_new = rmse(beta, x, y)
        print('Round %s Diff RMSE %s'%(i, abs(loss_new - loss)))
    i += 1
print('Coef: %s \nIntercept %s'%(beta[1], beta[0]))
res = rmse(beta, x, y)
print('Our RMSE: %s'%res)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train[['id']], train[['questions']])
print('Sklearn Coef: %s'%lr.coef_[0][0])
print('Sklearn Coef: %s'%lr.intercept_[0])
res = rmse([936.051219649, 2.19487084], train['id'], y)
print('Sklearn RMSE: %s'%res)

以上是“python中逻辑回归随机梯度下降法怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI