这篇文章主要介绍“C语言链式二叉树结构原理是什么”,在日常操作中,相信很多人在C语言链式二叉树结构原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C语言链式二叉树结构原理是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
typedef char BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }BTNode;
二叉树的遍历,是学习二叉树结构的重要部分。二叉树的遍历主要分为三种:1.前序遍历 2.中序遍历 3.后序遍历。首先我们要知道一颗二叉树分为根,左子树,右子树。而三种遍历方式也是围绕着根来实现的。
我们按上图来构建一颗二叉树
BTNode* CreatTreeNode(BTDataType x) { BTNode* node = (BTNode*)malloc(sizeof(BTDataType)); node->data = x; node->right = NULL; node->left = NULL; return node; } int main() { BTNode* A = CreatTreeNode('A'); BTNode* B = CreatTreeNode('B'); BTNode* C = CreatTreeNode('C'); BTNode* D = CreatTreeNode('D'); BTNode* E = CreatTreeNode('E'); BTNode* F = CreatTreeNode('F'); A->left = B; A->right = C; B->left = D; C->left = E; C->right = F; }
前序遍历的顺序为 根 左子树 右子树 顾名思义就是先访问根节点再访问左节点最后访问右节点。
按照前序遍历,则上图的遍历顺序为:A B D NULL NULL NULL C E NULL NULL F NULL NULL
// 二叉树前序遍历 void BinaryTreePrevOrder(BTNode* root) { if (root == NULL) //等于NULL就直接返回 { printf("NULL "); return; } printf("%c ", root->data);// 打印节点 BinaryTreePrevOrder(root->left);//递归到左子树 BinaryTreePrevOrder(root->right);//递归到右子树 }
中序遍历的顺序为 左子树 根 右 顾名思义就是先访问左节点再访问根节点最后访问右节点。
按照中序遍历,则上图的遍历顺序为:NULL D NULL B NULL A NULL E NULL C NULL F NULL
// 二叉树中序遍历 void BinaryTreeInOrder(BTNode* root) { if (root == NULL) //等于NULL就直接返回 { printf("NULL "); return; } BinaryTreePrevOrder(root->left);//递归到左子树 printf("%c ", root->data);//打印节点 BinaryTreePrevOrder(root->right);//递归到右子树 }
后序遍历的顺序为 左子树 右子树 根 顾名思义就是先访问左节点,再访问右节点,最后访问根。
按照后序遍历,则上图的遍历顺序为:NULL NULL D NULL B NULL NULL E NULL NULL F C A
// 二叉树后序遍历 void BinaryTreePostOrder(BTNode* root) { if (root == NULL)//等于NULL直接返回 { printf("NULL "); return; } BinaryTreePostOrder(root->left);//递归到左子树 BinaryTreePostOrder(root->right);//递归到右子树 printf("%c ", root->data);//打印节点 }
求二叉树节点的个数与上述遍历类似,都是通过递归函数来实现。一颗二叉树的节点个数主要以三个部分构成:根节点+左子树的节点个数+右子树的节点个数。知道这个公式我们就可以实现代码
// 二叉树节点个数 int BinaryTreeSize(BTNode* root) { if (root == NULL)//如果为空返回零 { return 0; } return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1; }
叶子节点的左右子树都为空,知道这个,我们只需稍微改动上述代码即可
// 二叉树叶子节点个数 int BinaryTreeLeafSize(BTNode* root) { if (root == NULL) { return 0; } if ((root->left == NULL) && (root->right == NULL)) { return 1; } return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right); }
如果指定一颗二叉树,求它第K层节点个数,也可以采用递归的思想,当给定的K为零的时候此时就是求根节点的个数,显而易见就是返回1;而K不为零时,我们可以求root左右子树K-1层的节点数之和。
// 二叉树第k层节点个数 int BinaryTreeLevelKSize(BTNode* root, int k) { if (root == NULL) { return 0; } if (k == 1) { return 1; } return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1); }
二叉树的高度就是指二叉树节点层次的最大值,也就是左右子树最大高度+1.
//二叉树深度/高度 int BinaryTreeDepth(BTNode* root) { if (root == NULL) { return 0; } int leftDepth = BinaryTreeDepth(root->left); int rightDepth = BinaryTreeDepth(root->right); return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1; }
// 二叉树查找值为x的节点 BTNode* BinaryTreeFind(BTNode* root, BTDataType x) { if (root == NULL) //根为空,直接返回NULL { return NULL; } if (root->data == x)//找到了 直接返回节点 { return root; } BTNode* leftRet = BinaryTreeFind(root->left, x); if (leftRet) { return leftRet; //如果再左子树找到,直接返回,无需递归到右子树 } BTNode* rightRet = BinaryTreeFind(root->right, x); if (rightRet) { return rightRet; } return NULL; //如果都没找到,就直接返回NULL }
#pragma once #include<stdio.h> #include<assert.h> #include<stdlib.h> typedef char BTDataType; typedef struct BinaryTreeNode { BTDataType data; struct BinaryTreeNode* left; struct BinaryTreeNode* right; }BTNode; BTNode* CreatTreeNode(BTDataType x); // 二叉树节点个数 int BinaryTreeSize(BTNode* root); // 二叉树叶子节点个数 int BinaryTreeLeafSize(BTNode* root); // 二叉树第k层节点个数 int BinaryTreeLevelKSize(BTNode* root, int k); // 二叉树查找值为x的节点 BTNode* BinaryTreeFind(BTNode* root, BTDataType x); // 二叉树前序遍历 void BinaryTreePrevOrder(BTNode* root); // 二叉树中序遍历 void BinaryTreeInOrder(BTNode* root); // 二叉树后序遍历 void BinaryTreePostOrder(BTNode* root); //二叉树深度/高度 int BinaryTreeDepth(BTNode* root); #include"BinarryTree.h" BTNode* CreatTreeNode(BTDataType x) { BTNode* node = (BTNode*)malloc(sizeof(BTDataType)); assert(node); node->data = x; node->right = NULL; node->left = NULL; return node; } // 二叉树前序遍历 void BinaryTreePrevOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return ; } printf("%c ", root->data); BinaryTreePrevOrder(root->left); BinaryTreePrevOrder(root->right); } // 二叉树中序遍历 void BinaryTreeInOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return ; } BinaryTreePrevOrder(root->left); printf("%c ", root->data); BinaryTreePrevOrder(root->right); } // 二叉树后序遍历 void BinaryTreePostOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return ; } BinaryTreePostOrder(root->left); BinaryTreePostOrder(root->right); printf("%c ", root->data); } // 二叉树节点个数 int BinaryTreeSize(BTNode* root) { if (root == NULL) { return 0; } return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1; } // 二叉树叶子节点个数 int BinaryTreeLeafSize(BTNode* root) { if (root == NULL) { return 0; } if ((root->left == NULL) && (root->right == NULL)) { return 1; } return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right); } // 二叉树第k层节点个数 int BinaryTreeLevelKSize(BTNode* root, int k) { if (root == NULL) { return 0; } if (k == 1) { return 1; } return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1); } // 二叉树查找值为x的节点 BTNode* BinaryTreeFind(BTNode* root, BTDataType x) { if (root == NULL) { return NULL; } if (root->data == x) { return root; } BTNode* leftRet = BinaryTreeFind(root->left, x); if (leftRet) { return leftRet; } BTNode* rightRet = BinaryTreeFind(root->right, x); if (rightRet) { return rightRet; } return NULL; } // 二叉树销毁 void BinaryTreeDestory(BTNode** root) { if (*root) { BinaryTreeDestory(&(*root)->left); BinaryTreeDestory(&(*root)->right); free(*root); *root = NULL; } } //二叉树深度/高度 int BinaryTreeDepth(BTNode* root) { if (root == NULL) { return 0; } int leftDepth = BinaryTreeDepth(root->left); int rightDepth = BinaryTreeDepth(root->right); return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1; } #include"BinarryTree.h" int main() { BTNode* A = CreatTreeNode('A'); BTNode* B = CreatTreeNode('B'); BTNode* C = CreatTreeNode('C'); BTNode* D = CreatTreeNode('D'); BTNode* E = CreatTreeNode('E'); BTNode* F = CreatTreeNode('F'); A->left = B; A->right = C; B->left = D; C->left = E; C->right = F; return 0; }
到此,关于“C语言链式二叉树结构原理是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。