本文小编为大家详细介绍“Python怎么实现Excel文件的合并”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么实现Excel文件的合并”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
将2020下的所有文件进行合并,成一个文件:
import requests import json import openpyxl import datetime import datetime as dt import time import pandas as pd import csv from openpyxl import load_workbook from sqlalchemy import create_engine import math import os import glob
csv_list=glob.glob(r'D:\Python\03DataAcquisition\COVID-19\2020\*.csv') print("所有数据文件总共有%s" %len(csv_list)) for i in csv_list: fr=open(i,"rb").read() #除了第一个数据文件外,其他不读取表头 with open('../output/covid19temp0314.csv','ab') as f: f.write(fr) f.close() print('数据合成完毕!')
合并后的数据:
## 02 使用函数进行数据合并 import os import pandas as pd # 定义函数(具有递归功能) def mergeFile(parent,path="",pathdeep=0,filelist=[],csvdatadf=pd.DataFrame(),csvdata=pd.DataFrame()): fileAbsPath=os.path.join(parent,path) if os.path.isdir(fileAbsPath)==True: if(pathdeep!=0 and ('.ipynb_checkpoints' not in str(fileAbsPath))): # =0代表没有下一层目录 print('--'+path) for filename2 in os.listdir(fileAbsPath): mergeFile(fileAbsPath,filename2,pathdeep=pathdeep+1) else: if(pathdeep==2 and path.endswith(".csv") and os.path.getsize(parent+'/'+path)>0): filelist.append(parent+'/'+path) return filelist # D:\Python\03DataAcquisition\COVID-19 path=input("请输入数据文件所在目录:") filelist=mergeFile(path) filelist csvdata=pd.DataFrame() csvdatadf=pd.DataFrame() for m in filelist: csvdata=pd.read_csv(m,encoding='utf-8-sig') csvdatadf=csvdatadf.append(csvdata) # 由于2023年的数据还没有,所以不合并
(* ̄(oo) ̄)注: 这个的等待时间应该会比较长,因为一共有一百九十多万条数据。
将合并后的数据进行保存:
csvdatadf.to_csv("covid190314.csv",index=None,encoding='utf-8-sig')
csvdatadf=pd.read_csv("covid190314.csv",encoding='utf-8-sig') csvdatadf.info()
读取新冠疫情在2020/0101之前的数据:
beforedf=pd.read_csv(r'D:\Python\03DataAcquisition\COVID-19\before20201111.csv',encoding='utf-8-sig')
beforedf.info()
将两组数据合并:
tempalldf=beforedf.append(csvdatadf) tempalldf.head()
如图所示:要将Country_Region从Hong Kong变成China。澳门和台湾也是如此:
查找有关台湾的数据:
beforedf.loc[beforedf['Country/Region']=='Taiwan'] beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan')]
beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan'),'Province/State']='Taiwan' beforedf.loc[beforedf['Province/State']=='Taiwan','Country/Region']='China' beforedf.loc[beforedf['Province/State']=='Taiwan']
香港的数据处理:
beforedf.loc[beforedf['Country/Region'].str.contains('Hong Kong'),'Province/State']='Hong Kong' beforedf.loc[beforedf['Province/State']=='Hong Kong','Country/Region']='China' afterdf.loc[afterdf['Country_Region'].str.contains('Hong Kong'),'Province_State']='Hong Kong' afterdf.loc[afterdf['Province_State']=='Hong Kong','Country_Region']='China'
澳门的数据处理:
beforedf.loc[beforedf['Country/Region'].str.contains('Macau'),'Province/State']='Macau' beforedf.loc[beforedf['Province/State']=='Macau','Country/Region']='China' afterdf.loc[afterdf['Country_Region'].str.contains('Macau'),'Province_State']='Macau' afterdf.loc[afterdf['Province_State']=='Macau','Country_Region']='China'
最终将整理好的数据进行保存:
beforedf.to_csv("beforedf0314.csv",index=None,encoding='utf-8-sig') afterdf.to_csv("afterdf0314.csv",index=None,encoding='utf-8-sig')
读到这里,这篇“Python怎么实现Excel文件的合并”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。