本篇内容介绍了“基于Matlab怎么实现野狗优化算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为。DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和食腐行为。为了提高该方法的整体效率和性能,在DOA中制定了三种与四条规则相关联的搜索策略,这些策略和规则在搜索空间的强化(开发)和多样化(探索)之间提供了一种精确的平衡。
该算法的优点:寻优能力强,收敛速度快等特点。
野狗种群在搜索边界内随机初始化:
其中,lbi和ubi分别表示个体的上下边界,randi是[0,1]之间的随机数。
捕食者通常使用高度智能的狩猎技术,野狗通常单独捕食小猎物,如兔子,但当捕食大猎物,如袋鼠时,它们会成群结队。野狗能找到猎物的位置并将其包围,其行为如上所示:
其中,t代表当前的迭代次数,是野狗新位置; na是在[2,SizePop/2]的逆序中生成的随机整数,其中SizePop是野狗种群的规模; 是将攻击的野狗的子集,其中是随机生成的野狗种群;是当前野狗的位置是上一次迭代中发现的最佳野狗;β1是在[-2.2]内均匀生成的随机数,它是一个比例因子,可改变野狗轨迹的大小。
野狗通常捕猎小猎物,直到单独捕获为止。行为模拟为:
其中,是野狗新位置,是上一次迭代中发现的最佳野狗,β2的值与式2.2中的值相同,β2是在[-1,1]区间内均匀生成的随机数,r1是在从1到最大搜索代理(野狗)大小的区间内生成的随机数,是随机选择的第r1个野狗,其中i≠r1。
在DOA中,野狗的存活率值由下式给出:
其中,fitnessmax和fitnessmin分别是当前一代中最差和最佳的适应度值,而fitness(i)是第i个野狗的当前适应度值。式(5)中的生存向量包含[0,1]区间内的归一化适应度。
%====欢迎关注公众号:电力系统与算法之美==== function DOA() %% ====参数设置==== popsize=20; % 种群规模 Iteration=1000; % 迭代次数 lb = -10; % 各维度的下限 ub = 10; % 各维度的上限 dim = 2; % 优化变量的个数 P= 0.5; % Hunting or Scavenger rate. Q= 0.7; % Group attack or persecution? beta1= -2 + 4* rand(); % -2 < beta < 2 beta2= -1 + 2* rand(); % -1 < beta2 < 1 naIni= 2; % minimum number of dingoes that will attack naEnd= popsize /naIni; % maximum number of dingoes that will attack na= round(naIni + (naEnd-naIni) * rand()); % number of dingoes that will attack %% ====初始化种群位置===== Positions=lb + (ub - lb).*rand(popsize, dim); for i=1:size(Positions,1) Fitness(i)=sum(Positions(i,:).^2); % get fitness end [best_score, minIdx]= min(Fitness); % the min fitness value vMin and the position minIdx best_x= Positions(minIdx,:); % the best vector [worst_score, ~]= max(Fitness); % the max fitness value vMax and the position maxIdx curve=zeros(1,Iteration); %% Section 2.2.4 Dingoes'survival rates for i=1:size(Fitness,2) survival(i)= (worst_score-Fitness(i))/(worst_score - best_score); end %% =====开始循环=========== for t=1:Iteration for r=1:popsize if rand() < P % Hunting sumatory=0; c=1; vAttack=[]; while(c<=na) idx =round( 1+ (popsize-1) * rand()); band= 0; for i=1:size(vAttack, 2) if idx== vAttack(i) band=1; break; end end if ~band vAttack(c) = idx; c=c+1; end end for j=1:size(vAttack,2) sumatory= sumatory + Positions(vAttack(j),:)- Positions(r,:); end sumatory=sumatory/na; if rand() < Q % group attack v(r,:)= beta1 * sumatory-best_x; % Strategy 1: Eq.2 else % Persecution r1= round(1+ (popsize-1)* rand()); % v(r,:)= best_x + beta1*(exp(beta2))*((Positions(r1,:)-Positions(r,:))); % end else % Scavenger r1= round(1+ (popsize-1)* rand()); if rand() < 0.5 val= 0; else val=1; end v(r,:)= (exp(beta2)* Positions(r1,:)-((-1)^val)*Positions(r,:))/2; % end if survival(r) <= 0.3 % Section 2.2.4, Algorithm 3 - Survival procedure band=1; while band r1= round(1+ (popsize-1)* rand()); r2= round(1+ (popsize-1)* rand()); if r1 ~= r2 band=0; end end if rand() < 0.5 val= 0; else val=1; end v(r,:)= best_x + (Positions(r1,:)-((-1)^val)*Positions(r2,:))/2; % Section 2.2.4, Strategy 4: Eq.6 end % Return back the search agents that go beyond the boundaries of the search space . Flag4ub=v(r,:)>ub; Flag4lb=v(r,:)<lb; v(r,:)=(v(r,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Evaluate new solutions Fnew= sum(v(r,:).^2); % Update if the solution improves if Fnew <= Fitness(r) Positions(r,:)= v(r,:); Fitness(r)= Fnew; end if Fnew <= best_score best_x= v(r,:); best_score= Fnew; end end curve(t)= best_score; [worst_score, ~]= max(Fitness); for i=1:size(Fitness,2) survival(i)= (worst_score-Fitness(i))/(worst_score - best_score); end end %======结束优化=============== %% 进化曲线 figure semilogy(curve,'Color','r','LineWidth',2) grid on title('收敛曲线') xlabel('迭代次数'); ylabel('最佳适应度'); axis tight legend('DOA') display(['最优解: ', num2str(best_x)]); display(['最小值: ', num2str(best_score)]); end
“基于Matlab怎么实现野狗优化算法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。