温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python日志模块logging怎么使用

发布时间:2022-06-06 10:01:32 来源:亿速云 阅读:157 作者:zzz 栏目:开发技术

这篇“Python日志模块logging怎么使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python日志模块logging怎么使用”文章吧。

一、概述

步骤

  • 创建logger对象

  • 创建handler对象

  • 创建formatter对象

  • 把formatter绑定到handler对象上

  • 把handler对象绑定到logger对象上

  • 设置级别

  • 测试

二、低配logging

日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别。

critical=50、error =40 、arning =30、info = 20、debug =10

v1:屏幕输出

v1版本无法指定日志的级别;无法指定日志的格式;只能往屏幕打印,无法写入文件。

import logging

logging.debug('调试信息')
logging.info('正常信息')
logging.warning('警告信息')  # WARNING:root:警告信息
logging.error('报错信息')  # ERROR:root:报错信息
logging.critical('严重错误信息')  # CRITICAL:root:严重错误信息

v2:输出到文件

v2版本不能指定字符编码;只能往文件中打印。

可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:

  • filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。

  • filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。

  • format:指定handler使用的日志显示格式。

  • datefmt:指定日期时间格式。

  • level:设置rootlogger(后边会讲解具体概念)的日志级别

  • stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

import logging
# 日志的基本配置

logging.basicConfig(filename='access.log',
                    format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',
                    level=10)

logging.debug('调试信息')  #  2019-11-28 18:25:26 PM - root - DEBUG -run: 调试信息
logging.info('正常信息')  #  2019-11-28 18:25:26 PM - root - INFO -run: 正常信息
logging.warning('警告信息')  #  2019-11-28 18:25:26 PM - root - WARNING -run: 警告信息
logging.error('报错信息')  #  2019-11-28 18:25:26 PM - root - ERROR -run: 报错信息
logging.critical('严重错误信息')  #  2019-11-28 18:25:26 PM - root - CRITICAL -run: 严重错误信息

format参数中可能用到的格式化串:

  • %(name)s :Logger的名字

  • %(levelno)s :数字形式的日志级别

  • %(levelname)s :文本形式的日志级别

  • %(pathname)s 调:用日志输出函数的模块的完整路径名,可能没有

  • %(filename)s :调用日志输出函数的模块的文件名

  • %(module)s :调用日志输出函数的模块名

  • %(funcName)s :调用日志输出函数的函数名

  • %(lineno)d :调用日志输出函数的语句所在的代码行

  • %(created)f :当前时间,用UNIX标准的表示时间的浮 点数表示

  • %(relativeCreated)d :输出日志信息时的,自Logger创建以 来的毫秒数

  • %(asctime)s :字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒

  • %(thread)d :线程ID。可能没有

  • %(threadName)s :线程名。可能没有

  • %(process)d :进程ID。可能没有

  • %(message)s:用户输出的消息

v3:使用内置各种对象

logging模块包含四种角色:logger、Filter、Formatter、Handler对象

  • logger:产生日志的对象

  • Filter:过滤日志的对象

  • Formatter:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式

  • Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端

import logging

# 1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
logger = logging.getLogger(__file__)

# 2、Filter对象:不常用,略

# 3、Handler对象:接收logger传来的日志,然后控制输出
h2 = logging.FileHandler('t1.log')  # 打印到文件
h3 = logging.FileHandler('t2.log')  # 打印到文件
sm = logging.StreamHandler()  # 打印到终端

# 4、Formatter对象:日志格式
formmater1 = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                               datefmt='%Y-%m-%d %H:%M:%S %p', )
formmater2 = logging.Formatter('%(asctime)s :  %(message)s',
                               datefmt='%Y-%m-%d %H:%M:%S %p', )
formmater3 = logging.Formatter('%(name)s %(message)s', )

# 5、为Handler对象绑定格式
h2.setFormatter(formmater1)
h3.setFormatter(formmater2)
sm.setFormatter(formmater3)

# 6、将Handler添加给logger并设置日志级别
logger.addHandler(h2)
logger.addHandler(h3)
logger.addHandler(sm)

# 设置日志级别,可以在两个关卡进行设置logger与handler
# logger是第一级过滤,然后才能到handler
logger.setLevel(30)
h2.setLevel(10)
h3.setLevel(10)
sm.setLevel(10)

# 7、测试
logger.debug('debug')
logger.info('info')
logger.warning('warning')
logger.error('error')
logger.critical('critical')

三、高配logging

1、 配置日志文件

以上三个版本的日志只是为了引出我们下面的日志配置文件

import os
import logging.config

# 定义三种日志输出格式 开始
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                  '[%(levelname)s][%(message)s]'  # 其中name为getLogger()指定的名字;lineno为调用日志输出函数的语句所在的代码行
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
# 定义日志输出格式 结束

logfile_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  # log文件的目录,需要自定义文件路径 # atm
logfile_dir = os.path.join(logfile_dir, 'log')  # C:\Users\oldboy\Desktop\atm\log

logfile_name = 'log.log'  # log文件名,需要自定义路径名

# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):  # C:\Users\oldboy\Desktop\atm\log
    os.mkdir(logfile_dir)

# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)  # C:\Users\oldboy\Desktop\atm\log\log.log
# 定义日志路径 结束

# log配置字典
LOGGING_DIC = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': standard_format
        },
        'simple': {
            'format': simple_format
        },
    },
    'filters': {},  # filter可以不定义
    'handlers': {
        # 打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',  # 打印到屏幕
            'formatter': 'simple'
        },
        # 打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
            'formatter': 'standard',
            'filename': logfile_path,  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M  (*****)
            'backupCount': 5,
            'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    'loggers': {
        # logging.getLogger(__name__)拿到的logger配置。如果''设置为固定值logger1,则下次导入必须设置成logging.getLogger('logger1')
        '': {
            # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            'handlers': ['default', 'console'],
            'level': 'DEBUG',
            'propagate': False,  # 向上(更高level的logger)传递
        },
    },
}



def load_my_logging_cfg():
    logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(__name__)  # 生成一个log实例
    logger.info('It works!')  # 记录该文件的运行状态
    
    return logger


if __name__ == '__main__':
    load_my_logging_cfg()

2、 使用日志

import time
import logging
import my_logging  # 导入自定义的logging配置

logger = logging.getLogger(__name__)  # 生成logger实例


def demo():
    logger.debug("start range... time:{}".format(time.time()))
    logger.info("中文测试开始。。。")
    for i in range(10):
        logger.debug("i:{}".format(i))
        time.sleep(0.2)
    else:
        logger.debug("over range... time:{}".format(time.time()))
    logger.info("中文测试结束。。。")


if __name__ == "__main__":
    my_logging.load_my_logging_cfg()  # 在你程序文件的入口加载自定义logging配置
    demo()

四、Django日志配置文件

Django(发音:[`dʒæŋɡəʊ])是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。

# logging_config.py

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]'
                      '[%(levelname)s][%(message)s]'
        },
        'simple': {
            'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
        },
        'collect': {
            'format': '%(message)s'
        }
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        # 打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        # 打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"),  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 3,
            'formatter': 'standard',
            'encoding': 'utf-8',
        },
        # 打印到文件的日志:收集错误及以上的日志
        'error': {
            'level': 'ERROR',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"),  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 5,
            'formatter': 'standard',
            'encoding': 'utf-8',
        },
        # 打印到文件的日志
        'collect': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"),
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 5,

            'formatter': 'collect',
            'encoding': "utf-8"
        }
    },
    'loggers': {
        # logging.getLogger(__name__)拿到的logger配置
        '': {
            'handlers': ['default', 'console', 'error'],
            'level': 'DEBUG',
            'propagate': True,
        },
        # logging.getLogger('collect')拿到的logger配置
        'collect': {
            'handlers': ['console', 'collect'],
            'level': 'INFO',
        }
    },
}


# -----------
# 用法:拿到俩个logger

logger = logging.getLogger(__name__)  # 线上正常的日志
collect_logger = logging.getLogger("collect")  # 领导说,需要为领导们单独定制领导们看的日志

以上就是关于“Python日志模块logging怎么使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI