这篇文章主要介绍“Python中怎么使用pyecharts绘制散点图”,在日常操作中,相信很多人在Python中怎么使用pyecharts绘制散点图问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python中怎么使用pyecharts绘制散点图”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
散点图是指在数理统计回归分析中,数据点在直角坐标系平面上的分布图, 散点图表示因变量随自变量而变化的大致趋势,由此趋势可以选择合适的函数进行经验分布的拟合,进而找到变量之间的函数关系。
1、数据用图表来展示,显然比较直观,在工作汇报等场合能起到事半功倍的效果,让听者更容易接受,理解你所处理的数据。
2、散点图更偏向于研究型图表,能让我们发现变量之间隐藏的关系为我们决策作出重要的引导作用。
3、散点图核心的价值在于发现变量之间的关系,千万不要简单地将这个关系理解为线性回归关系。变量间的关系有很多,如线性关系、指数关系、对数关系等等,当然,没有关系也是一种重要的关系。
4、散点图经过回归分析之后,可以对相关对象进行预测分析,进而做出科学的决策,而不是模棱两可。比如说:医学里的白细胞散点图可以在医学检测方面为我们健康提供精确的分析,为医生后续的判断做出重要的技术支持。
散点图主要的构成元素有:数据源,横纵坐标轴,变量名,研究的对象。而基本的要素就是点,也就是我们统计的数据,由这些点的分布我们才能观察出变量之间的关系。
而散点图一般研究的是两个变量之间的关系,往往满足不了我们日常的需求。因此,气泡图的诞生就是为散点图增加变量,提供更加丰富的信息,点的大小或者颜色可以定义为第三个变量,因为,做出来的散点图类似气泡,也由此得名为气泡图。
数据越多散点图呈现的效果就越明显。这也就是我们平时在进行建模的时候,采用回归拟合的原则,如果数据是遵循某种函数关系,我们可以通过机器进行训练,不断的迭代达到最优效果。
import pyecharts.options as opts from pyecharts.charts import Scatter data = [ [10.0, 8.04], [8.0, 6.95], [13.0, 7.58], [9.0, 8.81], [11.0, 8.33], [14.0, 9.96], [6.0, 7.24], [4.0, 4.26], [12.0, 10.84], [7.0, 4.82], [5.0, 5.68], ] data.sort(key=lambda x: x[0]) x_data = [d[0] for d in data] y_data = [d[1] for d in data] ( Scatter(init_opts=opts.InitOpts(width="1200px", height="600px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="", y_axis=y_data, symbol_size=20, label_opts=opts.LabelOpts(is_show=False), ) .set_series_opts() .set_global_opts( xaxis_opts=opts.AxisOpts( type_="value", splitline_opts=opts.SplitLineOpts(is_show=True) ), yaxis_opts=opts.AxisOpts( type_="value", axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), tooltip_opts=opts.TooltipOpts(is_show=False), ) .render("简单散点图.html") )
我们在平时的运用场景中,发现散点图太多呈现的效果图太密集了,我们只需要知道某一个区域它分布的数量,本来柱状图可以解决,但是这个散点图一个更好,可以反映区域的分布,主要可以看见它的数量趋势变化,根据自己的业务需求来使用吧。
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.commons.utils import JsCode from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "类别1", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="多维度数据"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("多维数据散点图.html") ) print([list(z) for z in zip(Faker.values(), Faker.choose())])
显示分割线,其实和之前的没有异样。
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis("A", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)), yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)), ) .render("分割线.html") )
用二维的数据来展示每个类别的分布状况,图表可显示多个类别,这样极大的增强了我们解释的效果。
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis("1", Faker.values()) .add_yaxis("2", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="标题"), visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20), ) .render("凸出大小散点图.html") )
之前的散点都是静态的,下面我们来看看动态的散点图;
from pyecharts import options as opts from pyecharts.charts import EffectScatter from pyecharts.faker import Faker c = ( EffectScatter() .add_xaxis(Faker.choose()) .add_yaxis("", Faker.values()) .set_global_opts(title_opts=opts.TitleOpts(title="散点图")) .render("动态散点图.html") )
from pyecharts import options as opts from pyecharts.charts import EffectScatter from pyecharts.faker import Faker from pyecharts.globals import SymbolType c = ( EffectScatter() .add_xaxis(Faker.choose()) .add_yaxis("", Faker.values(), symbol=SymbolType.ARROW) .set_global_opts(title_opts=opts.TitleOpts(title="标题")) .render("箭头动态散点图.html") )
到此,关于“Python中怎么使用pyecharts绘制散点图”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。