这篇文章主要介绍“Python怎么使用pyecharts绘制箱形图”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python怎么使用pyecharts绘制箱形图”文章能帮助大家解决问题。
后面的图形都是一些专业的统计图形,当然也会是我们可视化的对象。
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于 品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较。箱线图的绘制方法是:先找出一组数据的上边缘、下边缘、中位数和两个四分位数;然后, 连接两个四分位数画出箱体;再将上边缘和下边缘与箱体相连接,中位数在箱体中间。
1.直观明了地识别数据批中的异常值
上文讲了很久的识别异常值,其实箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不会影响箱形图的数据形状,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。
2.利用箱线图判断数据批的偏态和尾重
对于标准正态分布的样本,只有极少值为异常值。异常值越多说明尾部越重,自由度越小(即自由变动的量的个数);
而偏态表示偏离程度,异常值集中在较小值一侧,则分布呈左偏态;异常值集中在较大值一侧,则分布呈右偏态。
3.利用箱线图比较几批数据的形状
同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便昭然若揭。如上图,可直观得看出第三季度各分公司的销售额大体都在下降。
说实话这类图形的绘制,如果不懂专业的知识可能也无法理解,对于如何深层次的理解这个图形的具体含义,请移步到其他专栏,我会详细介绍,这里就不做过多的解释了。
from pyecharts import options as opts from pyecharts.charts import Boxplot v1 = [ [850, 740, 900, 1070, 930, 850, 950, 980, 980, 880, 1000, 980], [960, 940, 960, 940, 880, 800, 850, 880, 900, 840, 830, 790], ] v2 = [ [890, 810, 810, 820, 800, 770, 760, 740, 750, 760, 910, 920], [890, 840, 780, 810, 760, 810, 790, 810, 820, 850, 870, 870], ] c = Boxplot() c.add_xaxis(["expr1", "expr2"]) c.add_yaxis("A", c.prepare_data(v1)) c.add_yaxis("B", c.prepare_data(v2)) c.set_global_opts(title_opts=opts.TitleOpts(title="标题")) c.render("简单示例.html") print(c.prepare_data(v1))
import pyecharts.options as opts from pyecharts.charts import Grid, Boxplot, Scatter y_data = [ [ 850, 740, 900, 1070, 930, 850, 950, 980, 980, 880, 1000, 980, 930, 650, 760, 810, 1000, 1000, 960, 960, ], [ 960, 940, 960, 940, 880, 800, 850, 880, 900, 840, 830, 790, 810, 880, 880, 830, 800, 790, 760, 800, ], [ 880, 880, 880, 860, 720, 720, 620, 860, 970, 950, 880, 910, 850, 870, 840, 840, 850, 840, 840, 840, ], [ 890, 810, 810, 820, 800, 770, 760, 740, 750, 760, 910, 920, 890, 860, 880, 720, 840, 850, 850, 780, ], [ 890, 840, 780, 810, 760, 810, 790, 810, 820, 850, 870, 870, 810, 740, 810, 940, 950, 800, 810, 870, ], ] scatter_data = [650, 620, 720, 720, 950, 970] box_plot = Boxplot() box_plot = ( box_plot.add_xaxis(xaxis_data=["expr 0", "expr 1", "expr 2", "expr 3", "expr 4"]) .add_yaxis(series_name="", y_axis=box_plot.prepare_data(y_data)) .set_global_opts( title_opts=opts.TitleOpts( pos_left="center", title="Michelson-Morley Experiment" ), tooltip_opts=opts.TooltipOpts(trigger="item", axis_pointer_type="shadow"), xaxis_opts=opts.AxisOpts( type_="category", boundary_gap=True, splitarea_opts=opts.SplitAreaOpts(is_show=False), axislabel_opts=opts.LabelOpts(formatter="expr {value}"), splitline_opts=opts.SplitLineOpts(is_show=False), ), yaxis_opts=opts.AxisOpts( type_="value", name="km/s minus 299,000", splitarea_opts=opts.SplitAreaOpts( is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1) ), ), ) .set_series_opts(tooltip_opts=opts.TooltipOpts(formatter="{b}: {c}")) ) scatter = ( Scatter() .add_xaxis(xaxis_data=["expr 0", "expr 1", "expr 2", "expr 3", "expr 4"]) .add_yaxis(series_name="", y_axis=scatter_data) .set_global_opts( title_opts=opts.TitleOpts( pos_left="10%", pos_top="90%", title="upper: Q3 + 1.5 * IQR \nlower: Q1 - 1.5 * IQR", title_textstyle_opts=opts.TextStyleOpts( border_color="#999", border_width=1, font_size=14 ), ), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(is_show=False), axistick_opts=opts.AxisTickOpts(is_show=False), ), ) ) grid = ( Grid(init_opts=opts.InitOpts(width="1200px", height="600px")) .add( box_plot, grid_opts=opts.GridOpts(pos_left="10%", pos_right="10%", pos_bottom="15%"), ) .add( scatter, grid_opts=opts.GridOpts(pos_left="10%", pos_right="10%", pos_bottom="15%"), ) .render("第一个箱形图.html") )
关于“Python怎么使用pyecharts绘制箱形图”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。